目 录

_	١	7	⁴ 品简介	1
	1.	1	产品型号命名规则	1
	1.	2	功能代号命名规则	1
	1.	3	产品铭牌	3
	1.	4	产品外观	4
	1.	5	技术规范	7
	1.	6	产品设计执行标准	9
	1.	7	安全事项	9
	1.	8	注意事项	. 11
	1.	9	日常检查和保养	. 13
=	`	控	图制面板介绍	.14
	2.	-	控制面板概述	
	2.	2	控制面板及安装支架结构尺寸	. 15
	2.	3	控制面板操作说明	. 17
	2.	4	参数设置方法	. 17
	2.	5	功能码区内与区间的切换方法	
	2.	6	面板显示内容介绍	. 19
Ξ	`	安	- 装接线	.20
	3.	1	外围接线图	. 20
	3.	2	变频器安装	
	3.	3	接线	
	3.	4	控制端子功能简介	
	3.	5	主回路的电压、电流和功率的测量方法	
	3.	6	功率回路推荐配线	
	3.	7	保护导体(地线)的截面积	
	٠.	8	总体接线示意图	
		9	传导和辐射干扰对策	
四	`	偗	ī易操作与运行指南	
		1	产品基本知识	
	•	2	1-3 93 336 11 3 41 13	
	4.	3	基本控制运行指南	. 44

五、功	能参数	50			
5. 1	基本参数	50			
5. 2	运行控制	60			
5. 3	多功能输入输出端子	68			
5.4	模拟量、脉冲输入输出	78			
5. 5	多段速度控制	87			
5. 6	辅助功能	92			
5. 7	故障与保护	98			
5.8	电机参数	103			
5. 9	通讯参数	108			
5. 10	PID 参数	109			
5. 11	转矩控制参数区	115			
5. 12	显示参数区	118			
附录 1	常见故障处理	120			
附录 2	产品一览表及结构型式一览表	124			
附录 3	制动电阻推荐选型表	128			
附录 4	通 讯 手 册	129			
附录 5	供水系统参考连线图	141			
附录 6	功能码速查表	144			
附录 7	输入滤波器型号及尺寸	178			
升级记	录∶	183			
敬告用。	攻告用户:184				

一、产品简介

本使用手册简要介绍了 E800 系列变频器的安装接线、参数设定及操作使用的有关事项,务请妥善条保管。如果使用中发生故障,请与厂家或经销商联系。

1.1 产品型号命名规则

功能代号命名规则

1. 2

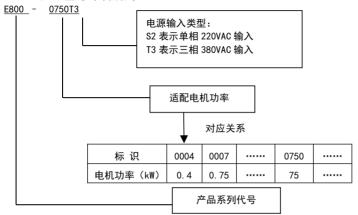


图 1-1 产品型号命名规则

C5 U1 F2 AF01 B1 R3 L1 RL 双继电器 RL 支持双继电器 备注 1 电抗器类型 11 支持直流电抗器 备注 2 滤波器类型 R3 C3 级滤波器 备注 3 制动方式 能耗制动 备注 4 B1 控制面板类 AF 中文无电位器 LED 控制 AF01 备注 5 Modbus 通讯采用端子接口 通讯类型 F2 备注6 认证类型 U1 CE 备注 7 结构代号 C5 C5 结构

图 1-2 选配功能代号命名规则

备注:

- 1、30KW 及以下机型支持双继电器输出(整机型号带 RL)。37KW 及以上机型不支持双继电器输出。
- 2、45KW 及以下无直流电抗器,55KW 及以上标配无直流电抗器,可选配内置直流电抗器(即整机型号带L1)。
- 3、E800 系列 T3 45KW 及以下滤波器为选配。
- 4、E800 系列制动单元三相 380V 机型 30kW 及以下为标配,三相 220V 1.5kW、2.2kW,单相 220V 全部机型及三相 380V 37kW~110kW 为选配内置,160kW 及以上无内置制动单元方案。

5、E800 系列本机控制面板:

The state of the s					
结构代号	面板代号	面板解释			
	AE01	AE 中文无电位器控制面板			
E1	AE02	AE 中文有模拟电位器控制面板			
EI	AE03	AE 英文无电位器控制面板			
	AE04	AE 英文有模拟电位器控制面板			
	AF01	AF 中文无电位器控制面板			
E2∼E6	AF02	AF 中文有模拟电位器控制面板			
EZ: 0E0	AF03	AF 英文无电位器控制面板			
	AF04	AF 英文有模拟电位器控制面板			
	A601	A6 中文无电位器 LED 控制面板			
	A602	A6 中文有模拟电位器 LED 控制面板			
E7∼CB	A603	A6 英文无电位器 LED 控制面板			
L/ 30B	A604	A6 英文有模拟电位器 LED 控制面板			
	A612	A6 中文有数字电位器 LED 控制面板			
	A614	A6 英文有数字电位器 LED 控制面板			

E800 系列远控控制面板

面板代号	面板解释
A601	A6 中文无电位器 LED 控制面板
A602	A6 中文有模拟电位器 LED 控制面板
A603	A6 英文无电位器 LED 控制面板
A604	A6 英文有模拟电位器 LED 控制面板
A612	A6 中文有数字电位器 LED 控制面板
A614	A6 英文有数字电位器 LED 控制面板
AA01	AA 中文无电位器 LED 控制面板
AA02	AA 中文有模拟电位器 LED 控制面板

AA03	AA 英文无电位器 LED 控制面板
AA04	AA 英文有模拟电位器 LED 控制面板
AA05	AA 中英文无电位器 LED 控制面板

6、通讯类型

结构代号	通讯代号	通讯代号解释
E1 结构及以上	F2	Modbus

7、认证类型

认证代号	认证代号解释	支持功率
U1	CE	≤500kW
U5	UL+CE	≤22kW

1.3 产品铭牌

以 E800 系列单相交流 220V 输入, 0.75kW 变频器为例, 需要内置制动单元和滤波器、控制面板带电位器, 其铭牌如下图所示。

	Ę	Ŗa°	欧	瑞	传动目	包气用	设 份 有	限公司	
型	号		E80	0-0	007S2		功能代号	E1U1F2AE02B1R3	
输	λ		1 PH		AC	220~	·240 V	50/60 Hz	
输	田		3 PH		AC	0~INI	PUT V	4.5 A	
480	ш	ш			C	.75 kW			0.50~590.0 Hz
(€ IP20					E080007	S215914	1L1435		

图 1-3 产品铭牌

1PH 表示单相输入; 220V 50/60Hz 表示输入电压和额定频率。 3PH 表示输出三相, 4.5A 0.75kW 表示额定输出电流和功率。

- 0.50~590.0Hz 表示输出频率范围。
- 注:整机型号包含产品型号和选配功能代号两部分,在订货时请务必填写完整的整机型号,以免发 错货而影响您的正常使用。

1.4 产品外观

1.4.1 外观介绍

E800 系列变频器外观结构分塑壳和金属 壳两大类,采用壁挂式安装结构。塑料外壳采 用优质材料模压而成,造型美观且强度高、 韧性好。

以 E800-0110T3 为例,产品外形及结构部件如右图所示。

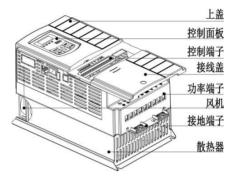
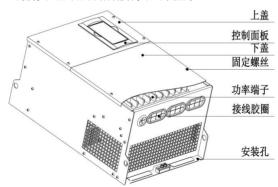
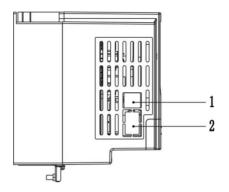
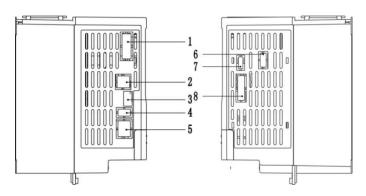


图 1-4 塑壳产品外形及结构部件图

金属外壳采用先进的表面喷粉喷塑工艺,色泽考究、外观优美,前面板采用可拆卸上下分体结构,接线和维护十分方便。

以 E800-0550T3 为例,产品外形及结构部件,如下图所示。


图 1-5 金属壳产品外形及结构部件图

1.4.2 接口介绍

(1)、E1 结构接口介绍:

(2) 、E2~E6 结构接口介绍:

(3)、E7-CB 结构接口介绍

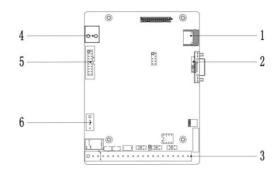
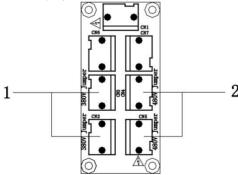


表 1-1 E800 接口介绍

	接口介绍		
序号	E1 结构介绍	E2~E6 结构介绍	E7 及铁壳结构介绍
1	8 芯网线远控盒接口	备用	8 芯网线远控盒接口
2	RS-485 通讯 (A+,B-)	8 芯网线远控盒接口	备用
3		RS-485 通讯(A+,B-)	控制端子
4		备用	备用
5		备用	备用
6		备用	RS-485 通讯(A+,B-)
7		备用	
8		备用	

1.5 技术规范

表 1-2 E800 系列变频器技术规范


	项目	内 容
	额定电压范围	三相 380V~480V(+10%~-15%) ^注 ; 单相 220V~240V(±15%);
输入	新定频率	50/60Hz
	额定电压范围	三相 0~INPUT(V)
輸出	频率范围	0.50~590.0Hz(矢量控制不允许超过 500Hz)
	载波频率	0.8~10KHz; 固定载波和随机载波可选择(F159)
	输入频率分辨率	数字设定: 0.01Hz, 模拟设定: 上限频率×0.1%
	控制方式	VVVF 控制,SVC(无速度传感器矢量控制)控制,同步电机: SVC(开环矢量)控制
	起动转矩	0.5Hz/150%;
	调速范围	1: 100;
	稳速精度	±0.5%;
	转矩控制精度	±5%;
控制	过载能力	132kW 及以下: 150%额定电流 60 秒 132kW 以上: 120%额定电流 60 秒
方式	转矩提升	手动转矩提升曲线 1~20、自动转矩提升
	VVVF 曲线	三种方式:直线型、次方型、自定义 VVVF 曲线型
	起动方式	直接起动、转速追踪起动
	直流制动	直流制动频率: 0.20~50.00 Hz, 制动时间: 0.00~30.00S
	点动控制	点动频率范围:下限频率~上限频率;点动加减速时间:0.1~ 3000S
	自动循环、多段速	通过自动循环或控制端子实现 15 段速运行
	内置 PID	可方便实现过程闭环控制系统
	自动电压调整 (AVR)	当电网电压变化时,能自动保持输出电压恒定
	频率设定	电位器或外部模拟信号(0~5V,0~10V,0~20mA);控制面板(端子)▲/▼键、外部控制逻辑及自循环设定
10 /6	起/停控制	端子控制、控制面板控制、通讯控制
操作功能	运行命令通道	三种通道:控制面板给定、控制端子给定、串行通讯口给定
川 尼	主频率源	主频率源:数字给定、模拟电压给定、模拟电流给定、串行口 给定等
	辅频率源	6 种辅助频率,可灵活实现辅助频率微调、频率合成等

选配件	内置 EMI 滤波器、内置制动单元				
保护功能	输入缺相,输出缺相	、输入欠电压,直流过电压,过电流,变频器过载,电机过载、			
オがり形	电流失速, 过热, 外	部干扰、模拟量断线保护等			
	LED 数码管显示当前	输出频率、当前转速(rpm)、当前输出电流、当前输出电压、			
显示	当前直流母线电压、	当前 PID 反馈值、当前 PID 设定值、当前线速度、故障类型以			
	及系统参数、操作参	数;LED 灯指示变频器当前的工作状态			
	\U & 12 cc	室内,不受阳光直晒,无尘埃、腐蚀性气体、可燃性气体、油			
	设备场所	雾、水蒸汽、滴水或盐份等			
TT 1 + 47 (4	环境温度	−10°C~+40°C			
环境条件	环境湿度	90%以下(无水珠凝结现象)			
	振动强度	0.5g(加速度)以下			
	海拔高度	1000 米以下(海拔超过 1000 米需降额使用)			
防护等级	IP20				
适配电机	0. 4kW~500kW				

注:

- 一、在不同电压等级时,160KW 及以上机型(C7 及以上结构)需要客户针对不同电压等级进行转接板 跳线,转接板板号为:E2F3UZ00。
 - 1) 、当电源输入系统为 380~420 (含) VAC 系统时,请短接 CN2、CN3 (380V Jumper)
 - 2) 、当电源输入系统为 420~480VAC 系统时, 请短接 CN4、CN5(480V Jumper)

以上说明如下图所示 (1: 380V Jumper; 2: 480V Jumper):

- 注意:在出厂时,客户无特殊要求时,默认短接为380~420(含)VAC系统;此处为高压,请断电操作,违规操作,存在危险,请专业工程师操作!
- 二、420V~480V需求时,客户需订货注明。

1.6 产品设计执行标准

- IEC/EN 61800-5-1: 2007 可调速电气传动系统安全要求——电气、热及能量;
- IEC/EN 61800-3: 2004/+A1: 2012 可调速电气传动系统;第三部分:产品的电磁兼容性标准及 其特定的试验方法。

1.7 安全事项

- 安装前请认真确认变频器铭牌的型号、额定值。检查本机是否有运输破损现象,如变频器受损或 缺件请勿使用,以免有安全隐患。
- 安装使用环境无雨淋、水滴、蒸汽、粉尘及油性灰尘;无腐蚀、易燃性气体、液体;无金属微粒或金属粉末等。环境温度在-10°C~+40°C范围内。
- 请安装在金属等阻燃物质上, 远离可燃物。
- 请勿将导线头或螺钉等异物掉入变频器内。
- 变频器的可靠性很大程度取决于温度,周围温度升高 10℃,变频器寿命减半。由于变频器的错误安装或不合适固定,将使变频器产生温升或使周围温度升高,这可能导致故障或损坏等意外事故。
- 变频器装在控制柜内,应保证控制柜与外界通风流畅。请垂直安装变频器,便于热量向上散发, 不能倒置(详见图 1-6);若柜内有较多变频器时,为保证变频器的散热空间最好将变频器并排 安装;在需要上下安装时,请安装隔热导流板(详见图 1-7)。

垂直安装

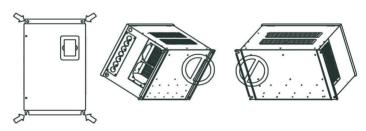


图 1-6 变频器垂直安装示意图

安装在控制柜内

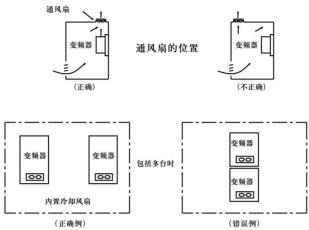


图 1-7 变频器安装在控制柜内示意图

1.8 注意事项

1.8.1 使用须知

● ◇只有经过培训并合格的人员才允许进行相关操作。

◇禁止在电源接通的情况下进行接线,检查和更换器件等作业。进行接线及检查之前,必须确认 所有输入电源已经断开,并等待不短于变频器上标注的时间或者确认直流母线电压低于 36V。理 论等待时间表如下:

变频器功率	最少等待时间
110kW 及以下	5 分钟
132kW - 315kW	30 分钟
355kW 以上	45 分钟

备注: 以上只是理论计算时间,在操作时请务必测量电压,在安全电压以下在进行操作。

- ◇电源接通后,必须先进行安全检查,检查方法为使用万用表交流电压档在变频器金属机壳或者 散热片与大地之间进行测量。确保电压在安全电压以下再进行操作。
- 功率端子 L1/R、L2/S、L3/T 接市电(L1/R、L2/S 接市电),输出端子 U、V、W 接电机。
- 接地应可靠,接地电阻不得超过 4Ω: 电机与变频器分别接地,切不可串联接地。
- ●如果需要在变频器输出和电机之间安装接触器等开关器件,请确保变频器在无输出时进行通断操作,在运行中请勿在输出端切换电机,否则可能会损坏变频器。
- 控制回路配线应与功率回路配线相互分开,以避免可能引起的干扰。
- 信号线不宜过长,否则会增加共模干扰。
- 符合表 1-2 "E800 系列变频器技术规范"对周围环境要求。
- 严禁采用接通或断开供申申源的方式来起、停变频器,否则可能引起变频器损坏
- 电机在首次使用或长时间放置后的再使用之前,应对电机进行绝缘检查,防止因电机绕组的绝缘 失效而损坏变频器。
- 由于变频器输出是 PWM 波,输出侧如安装有改善功率因数的电容或防雷用压敏电阻等,都会造成变频器故障跳闸或器件的损坏,务必请拆除。如图 1-8 所示。

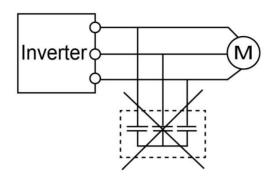


图 1-8 变频器输出端禁止使用电容器

● 在海拔高度超过1000 米的地区,由于空气稀薄造成变频器的散热效果变差,有必要降额使用。 图 1-9 所示为变频器的额定电流与海拔高度的关系曲线

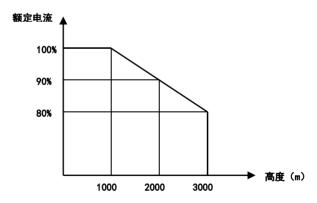


图 1-9 变频器额定电流与海拔高度降额曲线图

1.8.2 特别警告

● 切勿碰触变频器内功率端子,以防导致电击。

- 变频器通电前,必须确认变频器输入电源电压等级正确。
- 不要将输入电源连接到 U、V、W 或 PE/E/ 端子上。
- 不要将变频器安装在阳光照射的地方,不要堵塞变频器的散热孔。
- 变频器加电前要重新装好所有保护盖,以防电击。
- 只允许专业人员进行维护,检查或更换零部件。
- 严禁带电作业。

1.9 日常检查和保养

1.9.1 定期检查

- 定期清洁冷却风扇和风道,并检查是否正常;定期清洁机内积存的灰尘。
- 定期检查变频器的输入输出接线,接线端子是否有拉弧痕迹,检查电线是否老化。
- 检查各端子接线螺钉是否紧固。
- 检查变频器是否受到腐蚀。

1.9.2 易损件更换

变频器易损件主要有冷却风扇和滤波电解电容。

- 风扇使用寿命一般为2~3年,用户可以根据运行时间确定更换变频器的冷却风扇。冷却风扇可能损坏原因:轴承磨损、叶片老化。检查风扇叶片等是否有裂缝,开机时声音是否有异常振动声,以此来判断是否需要更换。
- 滤波电解电容使用寿命一般为 4~5 年,用户可以根据运行时间确定更换变频器的滤波电解电容。 滤波电解电容可能损坏原因:输入电源品质差,环境温度高,频繁的负载跳变,电解质老化。通 过有无液体漏出、安全阀是否已凸出,静电电容的测定,绝缘电阻的测定来判断是否需要更换。

1.9.3 存储

- 存储时尽量按原样装在本公司的包装箱内。
- 为防止长时间存放导致电解电容的劣化、保证在半年内充一次电、通电时间至少5小时。

1.9.4 日常保养

由于环境的温度、湿度、粉尘及振动的影响,会导致变频器内部的器件老化、潜在的故障发生并降低了变频器的使用寿命。因此对变频器的日常保养非常必要。

日常检查:

- 电机运行中,声音是否有异常变化。
- 电机运行中,是否产生振动。
- 变频器的安装环境是否发生变化。
- 变频器风扇运行是否正常,变频器是否过热。

1.9.5 日常清洁:

为使变频器始终保持在清洁状态,应及时清除变频器表面灰尘,防止积尘、金属粉尘、油污、水等进入变频器内部。

二、控制面板介绍

E800 系列变频器有两种形式(带电位器和不带电位器)的控制面板,按键功能和指示灯作用详见面板说明。

2.1 控制面板概述

面板分为三部分,数据显示区、状态指示区和控制面板操作区,如图 2-1 所示。

LED 显示运行频率、闪烁的目标频率、功能码、参数值或故障代码。

4个发光二极管指示工作状态。运行时 RUN 亮,正转时 FWD 亮,功能码区间内切换 DGT 亮,FRO 亮表示显示频率。

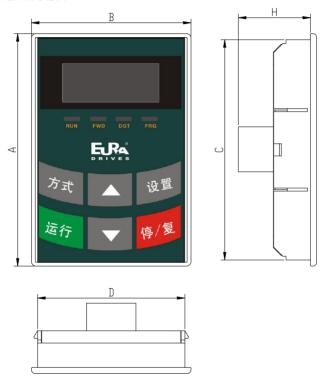
自带模拟电位器(AI3 通道),模拟量调速方式下可用来手动调速。 也可以使用外部电位器或外部模拟信号。自带数字电位器,可实现数字量调速功能;在任意显示菜单下,顺时针选择相当于上升键功能,逆时针选择相当于下降键功能;按下该按钮相当于设置键功能。

按"方式"键调出功能码,按"设置"键调出原参数。▲和▼键可选择功能码和参数,再按"设置"键可确认。在控制面板控制方式下,▲和▼键还可动态调速。"运行"、"停/复"键控制起停。在故障状态下,按"停/复"键可使变频器复位。

LED显示运行频率、闪烁的目标频率、功能码、参数值或故障代码。

4个发光二极管指示工作状态。运行时 RUN 亮,正转时 FWD 亮, 功能码区间内切换 DGT 亮,FRO 亮表示显示频率。

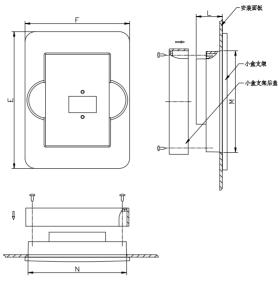
按"方式"键调出功能码,按"设置"键调出原参数。▲和▼键可选择功能码和参数,再按"设置"键可确认。在控制面板控制方式下,▲和▼键还可动态调速。"运行"、"停/复"键控制起停。在故障状态下,按"停/复"键可使变频器复位。


图 2-1 控制面板示意图

提示:

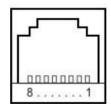
- 1、30kW 及以下功率机器, 本地控制面板不可外引, 若需要远程操作面板, 请选择 AA-A 或 A6-1-A 小盒, 采用 8 芯网线接口。
- 2、37kW 及以上功率机器本地控制面板可外引, 匹配 A6-1-A 小盒, 采用 8 芯网线连接。

2.2 控制面板及安装支架结构尺寸


1. 控制面板结构示意图

2. 控制面板结构尺寸表(单位: mm)

	代号	Α	В	С	D	Н	开孔尺寸
Γ	AA	76	52	72	48	24	73*49
Γ	A6-1	124	74	120	70	26	121*71


3. 远程操作面板安装支架结构尺寸示意图(外观以实物为准)

4. 远程操作面板安装支架结构尺寸表(单位: mm)

代号		外形尺寸	开孔尺寸		
105	E	F	L	<u>N</u>	М
A6-1	170	110	22	102	142
AA	109	80	20	75	81

5. 远程操作面板接口定义

管脚定义	1	2	3	4	5	6	7	8
8 芯面板	电位器	5V	5V 地	5V 地	信号1	信号 2	信号 3	信号 4

注意:控制板与控制盒的接口是完全一致的,所以要求做远控线时两头的线序必须完全一致。

6. 当使用远控面板控制时,厂家默认远控线长度为 1m,客户可以定制远控线的长度。在干扰强的场合或者远控线长度超过 3m 时最好在远控线上套上磁环,以增强抗干扰能力。

2.3 控制面板操作说明

面板上的所有按键均对用户开放。其功能作用见表 2-1。

按键 按键名称 说 明 方式 方式 调用功能码, 显示方式切换 设置 设置 调用和存储数据 \blacktriangle 上升 数据递增(调速或设置参数) \blacksquare 数据递减(调速或设置参数) 下降 运行 运行 运行变频器 变频器停机 停/复 停机或复位 故障状态下复位 功能码区间和区内转换

表 2-1 按键说明

2.4 参数设置方法

变频器内有众多的功能参数,用户通过更改这些参数可以实现不同的控制运行方式。需要说明的是,若用户设置密码有效(F107设置为1),在断过电或发生过保护之后,如果要设置参数,必须先输入用户密码,即按表 2-2 方式调出 F100,输入正确的密码。出厂时,用户密码为无效的,即用户不需要设置密码即可设置相应的参数。

		祝ここ シ双枝直が振	
步骤	按键	操作	显示
1	方式	按"方式"键显示功能码	F100
2	▲或▼	按"▲"或"▼"键选择所需功能码	FII4
3	设置	读取功能码中设定数据	5.0
4	▲或▼	修改数据	9.0
_	设置	存储设置数据后显示当前功能码	FII4
5	方式	切换至显示目标频率	

表 2-2 参数设置步骤

提示:上述操作是在变频器处于停机状态下完成的

2.5 功能码区内与区间的切换方法

本产品对用户开放十一个功能区,如表 2-3 所示。

	1/4 Z ⁻³ 1	ル形特力区	
区间名称	功能码分段	区间名称	功能码分段
基本参数区	F1	定时控制及保护区	F7
运行控制区	F2	电机参数区	F8
多功能输入输出区	F3	通讯功能区	F9
模拟量输入输出区	F4	PID 参数控制区	FA
多段速度区	F5	转矩控制参数区	FC
辅助功能区	F6	参数显示区	НО

表 2-3 功能码分区

由于功能码多,参数设置耗费时间,为此专门设计了"在功能码区内和功能码区之间切换"的功能,使参数设置方便易行。

按"方式"键,使控制面板显示功能码,此时若按"▲"或"▼"键,则功能码在区内循环的 递增或递减;如果再按一次"停/复"键,操作"▲"或"▼"键时,则功能码在功能码区之间循环变化。

例如当前显示功能码为 F111, DGT 指示灯点亮, 按 "▲" / "▼" 键时, 功能码在 F100~F160 内循环地递增或递减; 再次按 "停 / 复" 键,DGT 指示灯熄灭,操作 "▲" / "▼" 键时,则功能码在 10 个区之间循环变化,如 F211、F311···FC11、F111···,如图 2-2 所示。(说明书中用 50.00 表示闪烁显示相应目标频率值)

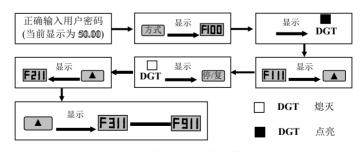
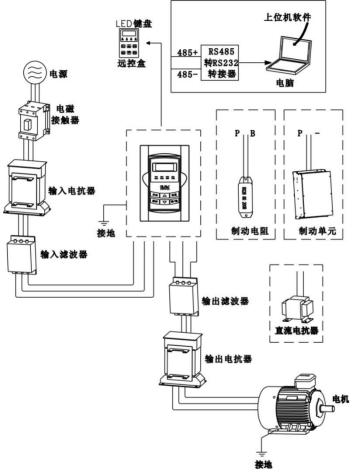


图 2-2 功能码区内和区间切换

2.6 面板显示内容介绍


面板显示项目内容及说明

显示项目	说 明
HF-0	停机状态按"方式"键显示该符号,表示控制面板点动操作有效。但 必须修改 F132 才能显示"HF-0"
-HF-	表示复位过程,复位后显示复位前所显示的内容
OC, OC1, OE, OL1, OL2, OH, LU, PFO, PF1, CE, FL, Err6	故障代码,分别表示:过电流 0C、过电流 0C1、过电压、变频器过载、电机过载、过热、输入欠电压、输出缺相、输入缺相等、通讯故障、转速追踪故障、看门狗故障等
Err5	PID 参数设置不合理
ESP	两线/三线式运行时,按下停/复键;外部急停端子闭合。
F152	功能码(参数代码)
10.00	表示变频器当前运行频率、参数设定值等
50. 00	停机闪烁显示目标频率
0.	方向切换时插入等待时间,("停机"或"自由停机")可取消等待
A100、U100	输出电流(100A)和输出电压(100V)。电流小于 100A 时,带一位小数
b*. *	显示 PID 反馈值
o*. *	显示 PID 给定值
L***	显示线速度
H***	显示散热器温度

三、安装接线

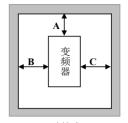
3.1 外围接线图

下面显示了 E800 系列变频器的外部连线图。

注意: (1) 30kW 及以下机型标配内置了制动单元,如果负载惯性不太大,可以只配制动电阻即可。

- (2) 37~110KW 为选配内置制动单元。
- (3) 55kW 以上机型选配内置直流电抗器。

3.1.1 配件图示说明


制动单元采用欧瑞标准制动单元, 其余如下表所示。

图片	名称	说明
	电缆	传输电信号的装置
	断路器	防止触电事故及保护可能引发漏电流火灾的对地短路(请选用用于变频器装置、具有抑制高次谐波功能的漏电断路器,断路器额定敏感电流对1台变频器应大于30mA)
	输入电抗器	适用于改善变频器的输入侧功率因数,抑制高次谐波电流。
	直流电抗器	刺 同从垍 水 电 加 。
0-0-0	输入滤波器	抑制变频器通过输入电源线所传输到公共 电网中的电磁干扰,在安装时请尽量靠近 变频器的输入端子侧进行安装。
	制动单元或制动电阻	用电阻或电阻单元消耗电机的再生能量以缩短减速时间。
0.80	输出滤波器	抑制从变频器输出侧布线处产生的干扰。 请尽量靠近变频器输出端子处安装。
	输出电抗器	用于延长变频器的有效传输距离,有效抑制变频器的IGBT模块开关时产生的瞬间高压。

3.2 变频器安装

变频器应垂直安装,如图 3-1 所示。

其周围应保证有效的通风空间。

壁挂式

图 3-1 变频器安装示意图

下表给出了变频器安装的间隙尺寸(推荐值)。

变频器类型			
E1 [~] E7 结构	A≥100mm	B≥30mm	C≥30mm
C4 [~] C6 结构	A≥200mm	B≥30mm	C≥30mm
C7 及以上	A≥200mm	B≥50mm	C≥50mm

注意: 当壁挂 E2~E6 结构使用外引控制盒,总线控制等需要外引网线、信号线等功能时,B 距离需根据导线最小折弯半径适当增加。同时安装多台变频器时,由于需要保证每一台变频器的散热,通常需要并排安装,机器顶部需要对其,其两台之间的间距应不小于单台变频器安装的间距。

3.3 接线

- 输入三相时 L1/R、L2/S、L3/T(单相时 L1/R、L2/S)接电网电源, [⊕]接大地,U、V、W 接电机。
- 注意电机也必须接地,否则容易产生干扰、电机带电。

单相 S2 1.5kW 及以下功率端子示意图如下:

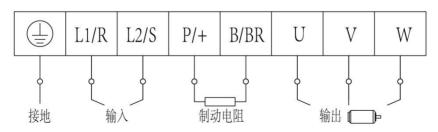


图 3-2 端子示意图

T2/T3 1.5kW 及以下功率端子示意图如下:

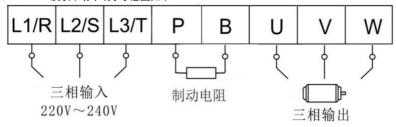


图 3-3 端子示意图

S2 2.2kW. T2 2.2kW~5.5kW 及 T3 2.2kW~18.5kW 功率端子示意图如下:

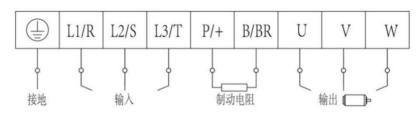


图 3-4 端子示意图

T3 22kW~45kW 功率端子示意图如下:

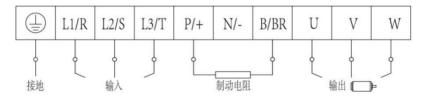


图 3-5 端子示意图

T3 55kW~180kW 功率端子示意图如下:

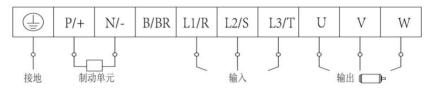


图 3-6 端子示意图

T3 200kW~500kW 功率端子示意图如下:

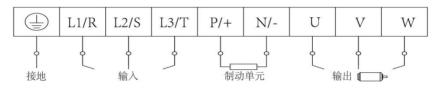


图 3-7 端子示意图

(以上图为示意图,实际产品的功率端子可能与上图未完全一致,接线时务必注意!)。

功率回路端子说明

端子名称	端子标号	端子功能说明							
电源输入端子	L1/R、L2/S、L3/T	三相 400V 交流电压输入端子, 单相 230V 接							
电源制入场计	L1/R, L2/S, L3/1	L1/R, L2/S;							
变频器输出端子	U、V、W	变频器输出端子,接电动机;							
接地端子	PE/E/⊕	变频器接大地端子;							
	P/+、B/BR	制动电阻连接端子;							
其他端子		共直流母线连接端子;							
7(10-10)	P/+、N/-	外接制动单元。P/+接制动单元的输入端子							
		"P"或"DC+", N/-接制动单元的输入端子							
		"N"或 "DC-";							

控制回路接线如下:

TA	TB	TC	D01	D02	24V	CM	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	10V	AI1	AI2	GND	A01	A02
GND	+5٧	A+	B-																	

注: 30kW 及其以下功率机器无 DO2、DI7 和 DI8 控制端子。

双继电器 E800 端子(带 RL):

TA1	TC1	TA2	TC2	24V	CM	DI1	DI2	DI3	DI4	DI5	DI6	10V	AI1	AI2	GND	A01	A02
GND	+5٧	A+	B-														

3.4 控制端子功能简介

操作使用变频器的关键在于正确灵活地使用控制端子。当然,控制端子并不是独立使用,而要配合相应的参数设置。此处介绍控制端子的基本功能作用,用户可结合后文的相关内容"端子定义功能",加以灵活使用。

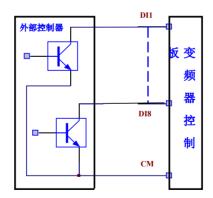
表 3-1 控制端子功能简介

端子	类别	名 称										
D01	<i>X y y y y y y y y y y</i>	多功能输出1	表征功能有效时该端子与 CM 间为 OV,无效时其值为 24V;作为高频输出时,最高输出频率为 100KHz; D01 作为高速输出,不建议接中间继电器。	输出端子功								
D02 ^{注 1}		多功能输出 2	表征功能有效时该端子与CM间为OV,无效时其值为24V	能按出厂值								
TA TB TC TA2 TC2	数字 输出	继电器触点	TC 为公共点, TB-TC 为常闭触点, TA-TC 为常开触点; 30kW 及以下功率机器触点容量为3A/250VAC、3A/30VDC; 双继电器: TA1\TC2、TA2\TC2 为常开触点	定义;也可通过修改功能码,改变其初始状态。								
A01	模拟输出	运行频率	外接频率表、转速表或电流表,其负极接 GND。 看 F423~F426	详细介绍可参								
A02	制山	电流显示	外接电流表,其负极接 GND。详细介绍可参看 F427~F430									
10V	模拟 电源	自给电源	变频器内部 10V 自给电源, 供本机使用; 外用时制信号的电源, 电流限制在 20mA 以下	力能做电压控								
AI1			模拟量调速时,电压或电流信号由该端子输入。电压输入的范围为 0~5V 或 0~10V,电流输入范围为 0~20mA,输入电阻为									
AI2	模拟输入	电压/电流 模拟量输入	50 Ω, 其地为 GND。如果输入为 4~20mA, 请调整功能码 F406=2。 电压和电流信号的选择可通过拨码开关来实现, 具体操作方法 见表 4-2、4-3,并且需要根据实际需求, 设置功能码 F438、 F439。出厂值 AI1 通道默认为 0~10V, AI2 通道默认为 0~20mA 电流通道									
GND	模拟地	自给电源地	外部控制信号(电压控制信号或电流源控制信号 为本机 10V 电源地	号)接地端,亦								
24V	电源	控制电源	24±1.5V 电源,地为 CM;外用时电流限制在 5	OmA 以下								

DI1		点动	该端子为有效状态时,变频器点动运行。停机状态和运行状态下,端子点动功能均有效。若定义为脉冲输入调速,此端子可作高速脉冲输入口,最高频率为 100KHz	此处输入端子
DI2		外部急停	该端子为有效状态时,变频器显示"ESP"	出厂值
DI3	数字	正转	该端子为有效状态时,变频器正向运转	定义;也
DI4	輸入	反转	该端子为有效信号时,变频器反向运转	可通过
D15		复位	故障状态下给于一有效信号,使变频器复位	修 改 功 能码,将
DI6		自由停机	运行中给此端子一有效信号,可使变频器自由停机	其定义
DI7 ^{注 1}		运行	该端子为有效状态时,变频器将按照加速时间运行	为 其 他 功能。
DI8 ^{注 1}		停机	运行中给此端子一有效信号,可使变频器减速停机	
СМ	公用端	控制电源地	24V 电源及其它控制信号的地	
A+	405	RS-485 差分 信号正端	遵循标准:TIA/EIA-485 (RS-485) 通讯协议;Modbus	通讯速率:
B-	485 通讯	RS-485 差分 信号负端	1200/2400/4800/9600/19200/38400/57600bps	

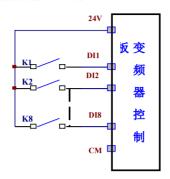
注: 30kW 及其以下功率机器无 DO2、DI7 和 DI8 控制端子。

数字输入端子接线方法:

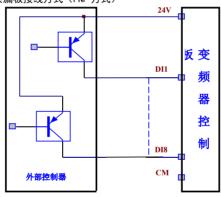

一般需要用屏蔽电缆,而且配线距离要尽量短,当选用有源信号驱动时,需要对电源的串扰采取必要的滤波措施。建议采用触点控制方式。

数字输入端子可选择共源级连接方式(NPN 型)或共漏极连接方式(PNP 型),若实现共源极连接方式,需要将控制板上拨动开关打到"NPN"端,具体接线方式如 1、2:

1、 无源共源极接线方式(NPN 方式)



2、 有源共源极接线方式(NPN 方式)



若实现共漏极连接方式,需要将控制板上拨动开关达到"PNP"端,具体接线方式如 3、4:

3、 无源共漏极接线方式(PNP 方式)

4、 有源共漏极接线方式(PNP 方式)

共源极连接方式是目前最为常用的一种方式,控制端子出厂值默认为共源极连接方式。因此用 户根据需求进行相应的选择。

变频器数字输入端子 NPN 型与 PNP 型方式选择方法:

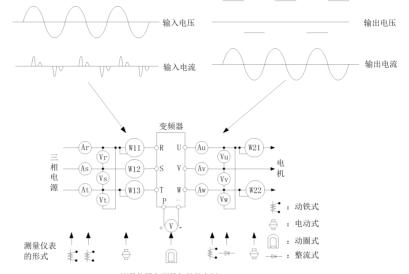

- 1、在变频器控制端子附件有一拨码开关 J7, 具体连接方法如图 3-7。
- 2、当拨动开关 J7 拨到 "NPN" 位置时, DI 端子和 CM 短接实现相关功能; 当拨动开关 J7 拨到 "PNP" 位置时, DI 端子和 24V 短接实现相关功能。

图 3-8 拨动开关 J7

3.5 主回路的电压、电流和功率的测量方法

变频器的电源侧,输出侧的电压,电流因为含有高频成分,所以测量仪表和测量回路不同, 所得到的数据也不同,用工频仪表测量时,请用下页指定推荐的仪表按照下图所示的回路进行测量。

测量位置和测量仪器的实例

表 3-2 测量仪表介绍

 电源側电流 I1 R、S、T 的线电流	测量项目	测量位置	测量仪器	备注(测量值的基准)		
电源侧功率 P1 R、S、T和 R-S、S-T、T-R le 动式单相功率表 le 源侧功率, 进行下面的计算 (三相电源时):	电源电压 V1	R-S、S-T、T-R 之间	动铁式交流电压表			
电源側功率日数 Pf1 調量电源电压,电源侧电流,电源侧功率,进行下面的计算(三相电源时): Pf1= P1	电源侧电流 I1	R、S、T的线电流	动铁式交流电流表			
Pf1	电源侧功率 P1	田 浪伽 I カ ※ P1		' ''		
輸出側电压 V2 U-V、V-W、W-U 之间 1: 动铁式不能测量) 輸出电压的±1%以下	0	初9年60 数				
1: 动铁式不能测量) 輸出电压的±1%以下 輸出側电流 12	#AU /@/ + T. VO		整流式交流电压表(注	各相间的差值在最高		
输出侧电流 I2 U、V、W 的线电流 动铁式交流电流表(注 2) 各相间电流的差值在 ±10%以下。 输出侧功率 P2 U、V、W 和 U→V、V→W、W→U 间 电动式单相功率表 P1=W21+W22 (2 功率表 法) 输出侧功率因数 Pf2 测量电源电压,电源侧电流,电源侧功率,进行下面的计算(三相电源时): Pf2 = P2 √3V2×I2×100% 直流母线电压(整流桥输出) P、→之间 动圈式(万用表等) DC10V±0.2V 控制板电源测量 10V-GND 之间 动圈式(万用表等) DC24V±1.5V 模拟量输出 A01 A01-GND 之间 动圈式(万用表等) 最大频率时约为 DC10V 根警信号 TA/TC 之间 TB/TC 之间 动圈式(万用表等) 最大频率时约为 DC10V 机警信号 TA/TC 之间 TB/TC 之间 动圈式(万用表等) TA/TC 不通 导通	制出侧电压 V2	▎U─Ⅴ、Ⅴ─₩、₩─U∠∥╝ │	1: 动铁式不能测量)	输出电压的±1%以下		
輸出侧电流 12 U、V、W 的线电流 2) 各相间电流的差值在 ±10%以下。 輸出侧功率 P2 U、V、W 和 U-V、V-W、W-U 间 电动式单相功率表 P1=W21+W22 (2 功率表 法) 輸出侧功率因数 Pf2 测量电源电压,电源侧电流,电源侧功率,进行下面的计算(三相电源时): Pf2 = P2 / √3V2×I2 × 100% 直流母线电压(整 流桥输出) P、-之间 动圈式(万用表等)			-144-4-4-4-1V	电流在额定电流以下;		
### ### ### ### #####################	输出侧电流 I2	U、V、W的线电流		各相间电流的差值在		
抽出例功率 P2			2)	±10%以下。		
所立 $Pf2$ $Pf2 = \frac{P2}{\sqrt{3}V2 \times I2} \times 100\%$ $Pf2 = \frac{P2}{\sqrt{3}V2 \times I2} \times $	输出侧功率 P2		电动式单相功率表			
流桥输出) P、-之间 动圈式(万用表等) √2×/¹ 控制板电源测量 10V-GND 之间 动圈式(万用表等) DC10V±0.2V 24V-CM 之间 动圈式(万用表等) DC24V±1.5V 模拟量输出 A01 和圆式(万用表等) 最大频率时约为 DC10V 报警信号 TA/TC 之间 动圈式(万用表等) 表征故障输出时: TB/TC 之间 动圈式(万用表等) TA/TC 不通 导通		期 古 侧 功 举 凸 数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
控制板电源测量 24V-CM 之间 动圈式(万用表等) DC24V±1.5V 模拟量输出 A01 A01-GND 之间 动圈式(万用表等) 最大频率时约为 DC10V 报警信号 TA/TC 之间 TB/TC 之间 动圈式(万用表等) TA/TC 不通 导通		P、-之间	动圈式(万用表等)	, , , , , , , , , , , , , , , , , ,		
24V-CM 之间 动圈式(万用表等) DC24V±1.5V 模拟量输出 A01 和图式(万用表等) 最大频率时约为 DC10V 报警信号 TA/TC 之间 TB/TC 之间 动圈式(万用表等) 动圈式(万用表等) 表征故障输出时: (正常)(异常) TA/TC 不通 导通	均制 板 由 酒 测 景	10V-GND 之间	动圈式(万用表等)	DC10V±0.2V		
模拟量输出 A01 表征故障输出时: 报警信号 TA/TC 之间 TB/TC 之间 动圈式(万用表等) TA/TC 不通 导通	江州汉巴冰州里	24V-CM 之间	动圈式 (万用表等)	DC24V±1.5V		
报警信号 TA/TC 之间 动圈式(万用表等) (正常)(异常) TB/TC 之间 动圈式(万用表等) TA/TC 不通 导通	模拟量输出 A01-GND 之间		动圈式(万用表等)	最大频率时约为 DC10V		
TB/TC 之间				表征故障输出时:		
TB/TC 之间 TA/TC 不通 导通	10 ## / - D		动圈式(万用表等)	(正常)(异常)		
TB/TC 导诵 不诵				 TA/TC 不通 导通		
				TB/TC 导通 不通		

3.6 功率回路推荐配线

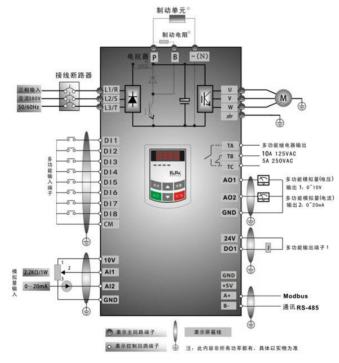
变频器型号	导线截面积(mm²)	变频器型号	导线截面面积(mm²)
E800-0004S2	1.5	E800-0370T3	25
E800-0007S2	2. 5	E800-0450T3	35
E800-0015S2	2. 5	E800-0550T3	35
E800-0022S2	4. 0	E800-0750T3	50
E800-0007T2	2. 5	E800-0900T3	70
E800-0015T2	2. 5	E800-1100T3	70
E800-0022T2	4. 0	E800-1320T3	95
E800-0007T3	1.5	E800-1600T3	120
E800-0015T3	2. 5	E800-1800T3	120
E800-0022T3	2. 5	E800-2000T3	150
E800-0030T3	2. 5	E800-2200T3	185
E800-0040T3	2. 5	E800-2500T3	240
E800-0055T3	4. 0	E800-2800T3	240
E800-0075T3	4. 0	E800-3150T3	300
E800-0110T3	6. 0	E800-3550T3	300
E800-0150T3	10	E800-4000T3	400
E800-0185T3	10	E800-4500T3	480
E800-0220T3	16	E800-5000T3	520
E800-0300T3	25		

功率回路推荐剥线长度或推荐压线鼻型号

为十口山田代孙汉人及	功率部分		接地部分	
变频器型号	接线方式	剥线长度(mm)	接线方式	剥线长度(mm)
E800-0004S2	压线	7. 0	压线	7. 0
E800-0007S2	压线	7. 0	压线	7. 0
E800-0015S2	压线	7. 0	压线	7. 0
E800-0022S2	压线	8. 0	压线	8. 0
E800-0002T2	压线	7. 0	压线	7. 0
E800-0004T2	压线	7. 0	压线	7. 0
E800-0007T2	压线	7. 0	压线	7. 0
E800-0015T2	压线	7. 0	压线	7. 0
E800-0022T2	压线	8. 0	压线	8. 0
E800-0030T2	压线	8. 0	压线	8. 0
E800-0007T3	压线	7. 0	压线	7. 0

安装接线

E800-0015T3	压线	7. 0	压线	7. 0
E800-0022T3	压线	8. 0	压线	8. 0
E800-0030T3	压线	8. 0	压线	8. 0
E800-0040T3	压线	8. 0	压线	8. 0
E800-0055T3	压线	8. 0	压线	8. 0
E800-0075T3	压线	10. 0	压线	10.0
E800-0110T3	压线	10. 0	压线	10.0
E800-0150T3	压线	10.5	压线	10.5
E800-0185T3	压线	10.5	压线	10.5
E800-0220T3	压线	16. 5	压线	16. 5
E800-0300T3	压线	16. 5	压线	16. 5


**************************************	功率部分		接地部分	
变频器型号	端子螺丝	压线鼻规格	端子螺丝	压线鼻规格
E800-0370T3	M8	GTNR25-6	M6	GTNR16-6
E800-0450T3	M8	GTNR35-8	M6	GTNR16-6
E800-0550T3	M8	GTNR35-8	M6	GTNR16-6
E800-0750T3	M8	GTNR50-8	M6	GTNR25-6
E800-0900T3	M10	GTNR70-10	M8	GTNR35-8
E800-1100T3	M10	GTNR70-10	M8	GTNR35-8
E800-1320T3	M10	GTNR95-10	M8	GTNR50-8
E800-1600T3	M10	SC120-12	M10	GTNR70-10
E800-1850T3	M12	GTNR120-12	M10	GTNR70-10
E800-2000T3	M12	GTNR150-12	M10	GTNR95-10
E800-2200T3	M12	GTNR185-16	M10	GTNR95-10
E800-2500T3	M12	GTNR240-16	M12	GTNR120-12
E800-2800T3	M12	GTNR240-16	M12	GTNR120-12
E800-3150T3	M16	GTNR150-16	M12	GTNR150-12
E800-3550T3	M16	GTNR150-16	M12	GTNR150-12
E800-4000T3	M16	GTNR240-16	M16	GTNR240-16
E800-4500T3	M16	GTNR240-16	M16	GTNR240-16
E800-5000T3	M16	GTNR240-16	M16	GTNR240-16

3.7 保护导体(地线)的截面积

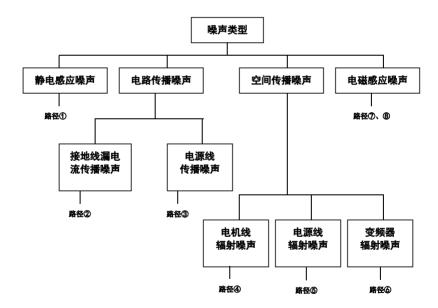
U、V、W 相的截面积 S (mm²)	的最小截面积 S (mm²)
\$≤16	s
16<\$≤35	16
35 <s< th=""><th>\$/2</th></s<>	\$/2

3.8 总体接线示意图

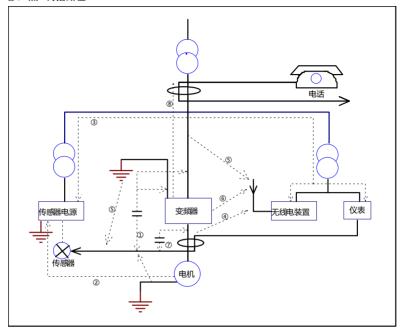
下图为 E800 系列变频器接线示意图。图中指出了各类端子的接线方法,实际使用中并不是每个端子都要接线。

三相变频器标准配线图 (NPN 方式)

提示: 1、单相变频器只需将电网电压与功率端子 L1/R、L2/S 连接。


- 2、30kW 及其以下功率. 8 芯网线为外控操作面板接口. 485 诵讯接口在侧面控制端子上。
- 3、37kW 及以上变频器有 8 个多功能输入端子 DI1~DI8, 30kW 以下功率只有 6 个多功能输入端子 DI1~DI6。
- 4、多功能继电器输出: 30kW 以下功率机器触点容量为 10A/125VAC、5A/250VAC、5A/30VDC; 37kW 及以上功率机器触点容量为 12A/125VAC、7A/250VAC、7A/30VDC。

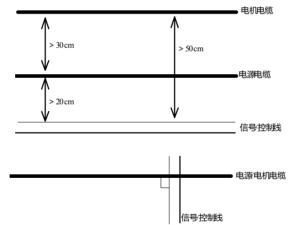
3.9 传导和辐射干扰对策


变频器的工作原理决定了它会产生一定的噪声,从而可能带来电磁兼容问题,为了减少或杜绝 变频器对外界的干扰,本节内容从噪声抑制、现场配线、接地、漏电流、电源滤波器的使用等几个 方面详细介绍了干扰的产生及处理方法,供现场安装参考。

3.9.1 噪声传播路径及抑制方法

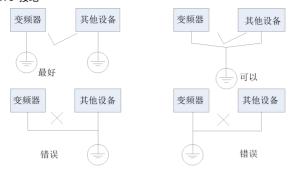
①、噪声类型

②、噪声传播路径


③、抑制噪声的基本方法

噪声传播路径	抑制噪声基本方法			
2	外围设备通过变频器的布线构成闭环回路时,变频器接地线漏电流,会 使设备产生误动作。此时若设备不接地,会减少误动作。			
3	当外围设备的电源、变频器的电源共用同一系统时,变频器发生的噪声经电源线传播,会使同一系统中的其他设备误动作,可采取下列措施预防:变频器的输入端安装 EMI 滤波器;将其他设备用隔离变压器或电源滤波器进行噪声隔离。			
456	处理测量仪表,无线电装置,传感器等微弱信号的设备及其信号线,如 果和变频器装于同一柜子里,且布线很接近时,容易受空间噪声影响产生误 动作,需要采取下述对策:			

	(1)容易受影响的设备和信号线,应尽量远离变频器安装。信号线应使用屏蔽线,屏蔽层接地,信号线电缆套入金属管中,并应尽量远离变频器和它的输入、输出线如果信号电缆必须穿越动力电缆,二者之间保持正交。
456	(2)在变频器输入、输出侧分别安装滤波器(铁氧体共模扼流圈),可以抑制动力线的辐射噪声;
	(3) 电机电缆线应放置于较大厚度的屏障中,如置于较大厚度(2mm 以上)的管道或埋入水泥槽中。动力线套入金属管中,并用屏蔽线接地。
	如果信号线和动力线平行布线或与动力线捆扎成束布线,由于电磁感应噪声,静电感应噪声在信号线中传播,有时会使设备发生误动作,所以应避免如此
178	布线,并使容易受影响的设备尽量远离变频器;使容易受影响的信号线尽量
	远离变频器的输入、输出线;信号线和动力线使用屏蔽线,分别套入金属管时,效果更好,金属管之间距离至少 20cm。


3.9.2 现场配线要求

为避免干扰相互耦合,控制电缆和电源电缆应该与电机电缆分开安装,一般它们之间应该保证 足够的距离且尽可能远,特别是当电缆平行安装并且延伸距离较长时。信号电缆必须穿越电源电缆 时,则应垂直穿越。

一般地,控制线必须为屏蔽线,并且屏蔽金属丝采用 360°接地法接地。

3.9.3 接地

说明:

- (1) 、使用两台以上变频器的场合,避免将接地线形成回路。
- (2)、为保证不同的接地系统阻抗尽可能低,应尽可能采用最大的接地电缆标准尺寸。选用扁平缆相对较好,因为横截面积相同的电缆,扁平导体的高频阻抗比圆形导体小。
- (3)、如果系统各部接地端一块连接时,泄漏电流成为一个噪声源,会影响系统内设备,因此 变频器与其它音频设备、传感器及计算机等的接地端要分离。
- (4) 、布置接地电缆应远离噪声敏感设备 I/O 的配线, 且接地线尽可能短。

3.9.4 漏电流及处理措施

漏电流流过变频器输入、输出侧的线电容及电机电容,它的大小取决于分布电容、载波频率。漏电流包括对地漏电流和线间漏电流。

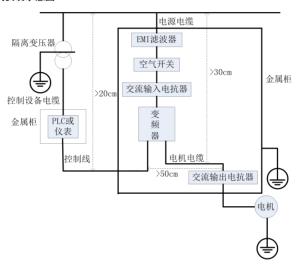
对地漏电流

漏电流不仅会流入变频器系统,而且可能通过地线流入其它设备,这些漏电流可能使漏电断路器、继电器或其它设备误动作。变频器载波频率越高、漏电流越大;电机电缆越长、漏电流也越大。 抑制措施:

- 降低载波频率,但电机噪声会增加;
- 电机电缆尽可能短;
- 变频器自身系统和其它系统使用为高谐波/浪涌的漏电流而设计的漏电断路器。

线间漏电流

流过变频器输出侧电缆间分布电容的漏电流,其高次谐波可能使外部热继电器误动作,特别是小容量(7.5kW以下)变频器,其配线很长时(50m以上),漏电流相对增加,易使外部热继电器误动作。


抑制措施:

● 降低载波频率,但电机噪音将增大;

● 在输出侧安装电抗器。

为了可靠保护电机,推荐使用温度传感器直接监测电机温度,用变频器本身的过载保护功能(电子热继申器)代替外部热继申器。

3.9.5 变频器电气安装示意图

说明:

- 电机电缆的地线在变频器侧接地,最好电机和变频器分别接地。
- 电机电缆、控制电缆应使用屏蔽线,要求机内屏蔽金属丝网与地线两端连接起来,避免金属 丝网的端部缠绕成辫子状,这样会影响高频条件下屏蔽效果,应使用电缆夹片。
- 保证安装板、安装螺钉和变频器的金属机箱之间良好的导电性。使用齿状破漆垫片和导电安装板。

3.9.6 电源滤波器使用指南

能够产生较强干扰的设备和对外界干扰敏感的设备都应使用电源滤波器,电源线滤波器是双向低通滤波器,它允许直流或者 50Hz 工频电流通过,不允许频率较高的电磁干扰电流通过。

电源线滤波器的作用

使设备能够满足电磁兼容标准中对传导发射和传导敏感度的要求,对于抑制设备的辐射发射也 起作用。防止设备自身产生的电磁干扰进入电源线,同时防止电源线上的干扰进入设备。

电源线滤波器常见错误安装方法

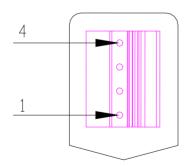
(1) 电源输入线过长

机柜内滤波器的安装位置要靠近电源线入口,并且滤波器的电源输入线在机箱内要尽量短。

(2) 电源线滤波器的输入线和输出线靠得过近

滤波器的输入输出线靠得过近,高频干扰信号通过滤波器的输入输出线直接耦合,将滤波器旁路掉,从而使电源线滤波器失去作用。

(3) 滤波器接地不良


滤波器的外壳必须与金属箱可靠连接。滤波器的外壳通常有一个专用的接地端子,但是用一根导线将滤波器连接到机壳上,对于高频干扰信号形同虚设,这是因为长导线的阻抗(非电阻)在高频时很大,根本起不到有效的旁路作用。正确的安装方法是将滤波器外壳直接贴在设备金属机壳导电平面上,并注意清除绝缘漆。

3.9.7 安规电容组跳线说明

变频器内部集成有安规电容组,出厂默认为连接有效状态,如出现整机上电时漏电保护开关动作,请将安规电容连接更改为无效状态,具体操作说明如下:

安规电容组,变频器内部在驱动板或者输入安规板上有短接跳线接插件 J1,出厂状态默认安规电容等处于有效状态,短接状态为 J1 (1,3)引脚,此状态是 EMC 干扰解决方案,若出现整机上电时漏电保护开关动作,请将安规电容连接更改为无效状态,J1 短接状态为 J1 (2,4)引脚。

以上铁壳结构参见下图指导说明:屏蔽板开孔三角形部分,代表为 J1 的 1 引脚。

安规短接跳线接插件 J1 示意图

四、简易操作与运行指南

本节主要介绍了使用变频器所必须了解的产品基本知识,以及相关操作步骤和方法。

4.1 产品基本知识

4.1.1 控制方式

E800 系列变频器控制方式: VVVF 控制方式(F106-2), SVC 控制方式(F106-0)以及矢量控制 1 (F106-3). 同步机矢量控制 (F106-6)。

4.1.2 转矩补偿方式

设定变频器运行频率源, 请参阅 F203~F207 功能码。

4.1.4 运行命令控制方式

变频器接受运行控制命令如起动、停止、点动等命令操作的物理通道。运行控制命令方式可以在 F200、F201 功能码中选择、共有以下五种:

0、控制面板指令; 1、端子指令; 2、控制面板+端子指令 3、Modbus 通讯控制; 4、控制面板+端子+Modbus。

4.1.5 变频器的工作状态

变频器在带电时,会出现四种工作状态: 停机状态、编程状态、运行状态和故障报警状态, 分别说明如下:

停机状态

变频器重新上电(未设置上电自起动时)或减速停止输出,在未接到运行命令之前,处于停机 状态。此时控制面板的运行状态指示灯(RUN)熄灭,控制面板控制器显示掉电前的状态。

编程状态

变频器可以通过控制面板切换到能对各功能码参数进行读取或修改操作的状态,这个状态就是 编程状态。变频器内有众多的功能参数,用户更改这些参数可以实现不同的控制运行方式。

注: 机器在运行时, 进入编程状态, 此时若要停机, 请退出编程状态。

运行状态

变频器在停机、无故障的状态,接受运行命令后,便进入运行状态。在正常运行状态时,控制面板的运行状态指示灯(RUN)点亭。

注: 机器处于故障报警状态, 无法运行。

故障报警状态

变频器出现故障并显示故障代码的状态。故障代码主要有: 0C, 0E, 0L1, 0L2, 0H, LU, PF1、PF0 分别表示"过电流"、"过电压"、"变频器过载"、"电机过载"、"过热"、"输入欠压"、"输入缺相"、"输出缺相"等。常见故障处理见说明书附录1常见故障处理。

4.2 简易操作指南

熟悉控制面板的功能与使用,是使用 E800 系列变频器的前提。请您在使用前仔细阅读。

4.2.1 控制面板操作方法

(1)、控制面板参数设置操作流程

E800 系列变频器的控制面板参数设置方法,采用三级菜单结构,可方便快捷地查询、修改功能码参数。

三级菜单分别为: 功能码区间(一级菜单)→功能码(二级菜单)→功能码设定值(三级菜单)。

(2)、设置参数

正确地设置 E800 系列变频器的参数,是充分发挥其性能的前提,介绍 E800 系列变频器控制面板的参数设置方法。

操作讨程如下:

- ①按方式键, 进入编程菜单。
- ②按停/复键,此时 DGT 灯灭,按▲和▼键功能码会在功能码区间变化,让控制面板显示器 F 后面第一位为按▲和▼键 1,即此时显示 F1××。
- ③再次按停/复键,此时 DGT 灯亮,功能码会在区间内变化。按▲和▼键使功能码变为 F113,按设置键后会显示 50.00,按▲和▼键更改为所需要的频率。
- ④按设置键,更改完毕。

4.2.2 状态参数切换显示

E800 系列变频器在停机或运行状态下,可由 LED 数码管显示变频器的各种状态参数。具体显示的状态参数内容可由功能码 F131 和 F132 的设定值选择确定,通过"方式"键可以循环切换显示停机或运行状态下的状态参数。下面分别对停机、运行两种工作状态下的参数显示操作方法进行说明。

(1) 停机显示参数的切换

在停机状态下, E800 系列变频器有如下停机状态参数可供选择: 控制面板点动、显示目标频率、显示目标转速、显示直流母线电压、显示 PID 反馈值、显示温度,显示 PID 给定值,可以用"方式"键循环切换。详见 F132 功能码的说明。

(2) 运行显示参数的切换

在运行状态下,E800 系列变频器有如下运行状态参数供选择: 当前输出频率、当前输出转速、输出电流、输出电压、直流母线电压、PID 反馈值、温度、线速度、PID 给定值,可以用"方式"键循环切换。详见 F131 功能码说明。

4.2.3 电机定子电阻参数测量操作流程

选择自动转矩补偿方式(F137=3)前,用户应准确输入电机的铭牌参数,E800 系列变频器据此 铭牌参数匹配电机定子电阻参数值,如要获得更好的控制性能,可起动变频器对电机定子电阻进行参数测量,以获得被控电机的准确参数,通过 F800 功能码可以对电机定子电阻进行参数测量。

例如被控电机铭牌参数为:电机极数 4,额定功率为 7.5kW,额定电压为 380V,额定电流为 15.4A,额定频率为 50.00Hz,额定转速为 1440rpm。

参数测量的操作流程如下:

- 1、按照上述电机参数正确设置参数: F801=7.5, F802=380, F803=15.4, F804=4, F805=1440。
- 2、为保证变频器的动态控制性能,设置 F800=1,即选择定子电阻自动参数测量,按控制面板运行键,显示"TEST",数秒钟后,自动测量结束,电机定子电阻参数将存储在 F806 内,F800 自动变为 0。

说明:选择自动矩补偿方式(F137=3),是为了自动提升低频力矩,需要测量被控电机定子电阻参数值,因此不能为了达到电机的同步运行,将一台变频器带动多台电机,若现场所需,必须使用一台变频器带动多台电机,请将 F137 设置为不等于 3 的其他参数。

4.2.4 简单操作流程

表 4-1

E800 系列变频器使用操作流程简介

流程	操作内容	参考内容
安装和使用环 境	在符合产品技术规格要求的场所安装变频器。主要考虑环境条 件(温度、湿度等)及变频器的散热等因素是否符合要求。	参见第一~ 三章
变频器配线	主电路输入、输出端子配线;接地线配线;开关量控制端子、 模拟量端子、通讯接口等配线。	参见第三章
通电前检查	确认输入电源电压正确,输入供电回路接有断路器; 变频器已正确可靠接地; 电源线正确接入变频器的电源输入端子(单相电网接 L1/R、 L2/S 端子,三相电网接 L1/R、L2/S、L3/T 端子); 变频器的输出端子 U、V、W 与电机正确连接; 控制端子的接线正确,外部各种开关全部正确预置; 电机空载(机械负载与电机脱开)。	参见第一~ 三章
上电检查	变频器是否有异常声响、冒烟、异味等情况; 控制面板显示正常,无故障报警信息; 如有异常现象,请立即断开电源。	参见附录 1、 的说明
正确输入电机 铭牌参数及进 行电机定子电	第一次运行前,务必要正确输入电机的铭牌参数并进行电机定 子电阻参数测量,已获得最佳的控制性能。	参见 F800~ F830 参 数

阻参数测量		组说明
设置运行控制 参数	正确设置变频器和电机的参数,主要包括:目标频率,上下限频率,加减速时间,方向控制命令等参数。用户可根据实际应用情况选择相应的运行控制方式。	参见参数组说明
空载试运行检查	电机空载,用控制面板或控制端子起动变频器运行,检查并且确认驱动系统的运行状态。 电机:运行平稳,旋转正常,转向正确,加减速过程正常,无异常振动,无异常噪声,无异常气味;变频器:控制面板显示数据正常,风扇运转正常,继电器的动作顺序正常,无振动噪音等异常情况;如有异常情况,要立即停机检查。	参见第四章 的说明
带载试运行检查	在空载试运行正常后,连接好驱动系统负载; 用控制面板或控制端子起动变频器,并逐渐增加负载; 在负载增加到50%、100%时,分别运行一段时间,以检查系统 运行是否正常; 在运行中要全面检查,注意是否出现异常情况; 如有异常情况,要立即停机检查	
运行中检查	电机是否平稳转动; 电机转向是否正确; 电机转动时有无异常振动或噪音; 电机加减速过程是否平稳; 变频器输出状态和面板显示是否正确; 风机运转是否正常;有无异常振动或噪音; 如有异常,要立刻停机,断开电源检查	

4.3 基本控制运行指南

E800 系列变频器的基本操作举例:下面以 7.5kW 变频器,驱动 7.5kW 的三相异步交流电动机 为例,说明各种基本控制的运行操作过程。

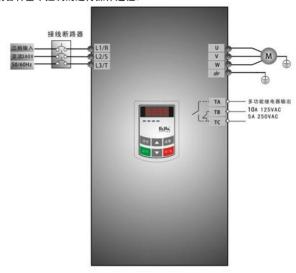


图 4-1 接线图 1

电机的铭牌参数为: 4 极, 额定功率: 7.5kW; 额定电压: 400V; 额定电流: 15.4A; 额定频率: 50.00Hz; 额定转速: 1440 rpm。

- 4.3.1 用控制面板进行频率设定,起动,正转,停止的操作过程
- (1) 按图 4-1 配线, 检查接线正确后, 合上空气开关, 变频器上电;
- (2) 按"方式"键,进入编程菜单。
- (3) 若将 F137 设为 3, 需要进行电机定子电阻参数测量, F137≠3 时, 直接操作第 4 步;

功能码	参数值
F800	1
F801	7. 5
F802	400
F803	15. 4
F804	4
F805	1440

按"运行"键,进行电机参数测量。检测结束后,电机停止旋转,相关参数存储于F806中。 有关电机参数测量的详细说明请参本说明"电机参数测量操作流程"一节。

(4) 设置变频器的功能参数

功能码	参数值
F111	50. 00
F200	0
F201	0
F202	0
F203	0

- (5) 按"运行"键,起动变频器运行;
- (6) 在运行中, 可按动▲或▼键, 修改变频器当前频率;
- (7) 按"停/复"键一次, 电机减速, 直到停止运行;
- (8) 断开空气开关,变频器断电。
- 4.3.2 用控制面板进行频率设定,用控制端子进行正、反转起动,停止的操作过程:
- (1) 按图 4-2 配线,检查接线正确后,合上空气开关,变频器上电;

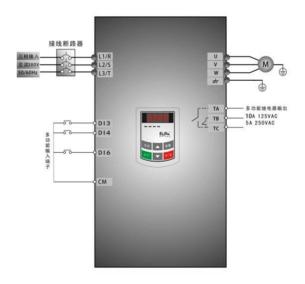


图 4-2 接线图 2

- (2) 按方式键, 进入编程菜单。
- (3) 进行电机参数学习;操作步骤与例1完全相同。
- (4) 设置变频器的功能参数;

功能码	参数值
F111	50. 00
F203	0
F208	1

- (5) 闭合 DI3 开关,变频器开始正向运行;
- (6) 在运行中, 可按动▲和▼键, 修改变频器当前频率;
- (7) 在运行中, 断开 DI3 开关, 再闭合 DI4 开关, 电机运行方向改变; (注意: 请用户根据负载情况设置正反转死区时间F120, 如过短可能会出现变频器00保护)
- (8) 断开 DI3 开关和 DI4 开关, 电机减速, 直到停止运行;
- (9) 断开空气开关,变频器断电。
- 4.3.3 用控制面板进行点动运行的操作过程
 - (1) 按图 4-1 配线, 检查接线正确后, 合上空气开关, 变频器上电;
- (2) 按"方式"键,进入编程菜单;
- (3) 进行电机参数测量:操作步骤与例1 完全相同。
- (4) 设置变频器的功能参数:

功能码	参数值
F124	5. 00
F125	30
F126	30
F132	1
F202	0

- (5) 一直按住"运行"键, 电机加速到点动设定频率, 并保持点动运行状态;
- (6) 松开"运行"键, 电机减速, 直到停止点动运行;
- (7) 断开空气开关,变频器断电。

- 4.3.4 用模拟量端子进行频率设定,用控制端子进行运行控制的操作过程
- (1) 按图 4-3 配线,检查接线正确后,合上空气开关,变频器上电。

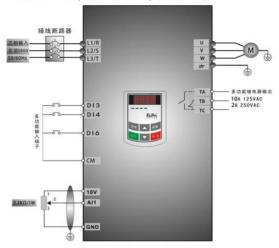


图 4-3 接线图 3

- (2) 按"方式"键, 进入编程菜单。
- (3) 进行电机参数学习:操作步骤与例1完全相同。
- (4) 设置变频器的功能参数:

功能码	参数值
F203	1
F208	1

(5) 对于 E800 系列 30kW 及其以下功率变频器控制端子排附近有一个两位黑色拨码开关 SW1,如图 4-4 所示。拨码开关的作用是选择模拟量输入端子 AI2 的电压信号 (0~5V/0~10V)或电流信号,出厂值默认为电流通道。使用时通过 F203 选择模拟量输入通道,通过 F439 设置输入信号类型为电压信号还是电流信号。按图示把开关 1 拨到 0N 位置,2 拨到 0N 位置,选择 0~20mA电流调速。其他拨码开关的位置与调速方式详见下表 4-2。

- (6)对于 E800 系列 37kW 及以上功率变频器控制端子排附近有一个四位黑色拨码开关 SW1,如图 4-5 所示。拨码开关选择模拟量输入端子 AI1、AI2 输入范围(0~5V/0~10V/0~20mA);通过 F203 选择输入通道,通过 F438、F439 设置输入信号类型为电压信号还是电流信号。出厂时拨码开关的位置如图 4-5,即 AI1 为 0~10V 输入,AI2 为 0~20mA 输入;其它拨码开关的位置与调速方式详见下表 4-3。
- (7) 闭合 DI3 开关, 电机开始正向运转;
- (8) 在运行中, 可调节设定电位器, 修改变频器当前设定频率;
- (9) 在运行中, 断开 DI3 开关, 再闭合 DI4 开关, 电机运行方向改变;
- (10) 断开 DI3 开关和 DI4 开关, 电机减速, 直到停止运行;
- (11) 断开空气开关,变频器断电。
- (12) E800 有两路模拟量输出端子 A01、A02, A02 端子只可以输出电流信号; A01 端子既可以输出电压信号也可以输出电流信号,电压电流输出选择开关是 J5,见图 4-6,A01 输出关系如表 4-4.

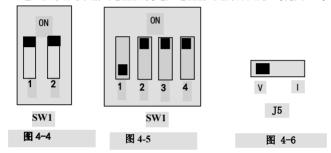


表 4-2 模拟量调速时拨码开关及参数的设置

7 - 500 - 700						
	F203=2	2, 选择 AI2 通	F203=1,选择 AI1 通道			
功能码	SW1 拨码开关					
F439	拨码开关1	拨码开关 2				
0	0FF	0FF	0~5V 电压	0~10V 电压		
0	0FF	ON	0~10V 电压			
1	ON	ON	0~20mA 电流			

表 4-3 模拟量调速时拨码开关及参数的设置

7.1. 10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1								
F203=1 选择 AI1 通道						F203=2 j	选择 AI2 通;	道
功能	拨码开关 SW1		拨动开		功能码	拨码开关 SW1		
F438	开关1	开关 3	关 S1	模拟信号范围	F439	开关 2	开关 4	模拟信号
0	0FF	0FF	+	0~5V 电压	0	0FF	0FF	0~5V 电压
0	0FF	ON	+	0~10V 电压	0	0FF	ON	0~10V 电
1	ON	ON	+	0~20mA 电流	1	ON	ON	0~20mA 电
0	0FF	ON	-	-10~10V 电压				
保留	0FF	0FF	_	保留				
保留	保留 ON ON - 保留							

ON 指拨码开关置于顶部位置; OFF 指拨码开关置于底部位置

表 4-4 A01 输出与拨动开关 J5 及 F423 的对应关系

A01 输出		F423 设置			
AUI 制山		0	1	2	
.= />	٧	0∼5V	0~10V	保留	
J5 位置	ı	保留	0∼20mA	4∼20mA	

五、功能参数

5.1 基本参数

F100 用户密码	设置范围: 0~9999	出厂值:0
-----------	--------------	-------

· 当 F107=1 密码有效时,再次上电或故障复位后要修改参数必须输入正确的用户密码,否则,将无法进行参数设置,并显示提示符"Err1"。

关联功能码: F107 密码是否有效

F108 用户密码设置

F102 变频器额定电流	(A)	出厂值:根据机型
F103 变频器功率(kW)	出厂值:根据机型

·用户可以查看变频器的额定电流和额定功率,不能修改。

F105 软件版本号	出厂值:根据机型	
------------	----------	--

·用户可以查看变频器的软件版本号,不能修改。

F106 控制方式	设置范围: 0: 无速度传感器矢量控制(SVC) 2: V/F 控制 3: 矢量控制 1 6: PMSM 无速度传感器矢量控制	出厂值: 2
-----------	---	--------

- •0:无速度传感器矢量控制:适用于通用的高性能驱动控制场合,一台变频器只能驱动一台电机。
- · 2: WVF 控制: 适用于对快速性、控制精度要求不高的场合。
- ·6: PMSM 无感矢量控制: 适用于通用交流永磁同步电机(无启动/阻尼绕组)无位置/速度传感器矢量控制, 一台变频器只能驱动一台电机。

提示:

- 1、矢量控制方式运行(F106=0、3或6)前,需进行电机参数辨识过程,以获得准确的电机参数;
- 2、矢量控制方式下(F106=0、3或6),一台变频器只能驱动一台电机,且电机容量与变频器容量 不宜相差过大,否则可能造成控制性能下降或者系统无法正常工作;
- 3、矢量控制方式下(F106=0),上限频率(F111)不允许超过500.00Hz;
- 4、如果能获得电机厂家的参数,亦可将电机参数手动输入;
- 5、使用出厂默认参数时运行,一般情况下电机可以正常使用,但不一定能获得最佳控制性能,因此仍然推荐在矢量控制方式运行前,进行电机参数自学习,以准确辨识电机参数,达到最佳控制效果;
- 6、防止误动作及烧电机、在矢量控制及自动转矩控制下 F641 不能设置有效。

F107 密码是否有效	设置范围: 0: 无效; 1: 有效	出厂值: 0
F108 用户密码设置	设置范围: 0~9999	出厂值:8

·F107设置为0时,不必输入密码即可进行功能码的修改和设定。

F107 设置为 1 时,必须通过 F100 输入用户密码,才能修改和设定功能码参数。

- ·用户可以通过 F108 修改"用户密码",操作方法与修改其它参数相同。
- ·F100 输入 F108 所设定的值,即可打开用户密码。

提示: 在 F107=1 密码保护有效时,如未打开用户密码,查看 F108 时,则显示 0。

F109	起动频率(Hz)	设置范围: 0.00~10.00	出厂值: 0.00
F110	起动频率保持时间(S)	设置范围: 0.0~999.9	出厂值: 0.0

- ·起动频率为变频器开始起动的频率,设定目标频率小于起动频率时,则起动频率不起作用;
- · 变频器从起动频率开始运行,保持起动频率运行 F110 所设定的时间后,加减速到目标频率。保持时间不包含在加减速时间内:
- ·起动频率不受 F112 所设定的下限频率限制,即若 F109 所设定频率低于 F112 所设下限频率,起动时,变频器仍然依照 F109、F110 所设定参数起动。起动完毕变频器正常运行时,工作频率范围受 F111、F112 所设定值约束:
- ·起动频率设定值应低于 F111 所设定的上限频率;
- ·转速追踪时, F109、F110设定值无效:

F111 上限频率(Hz)	设置范围: F113~590.0	出厂值: 50.00
F112 下限频率(Hz)	设置范围: 0.00~F113	出厂值: 0.50

- · F111 可以设置变频器运行的最高频率。
- · F112 可以设置变频器运行的最低频率。
- ·下限频率设定值必须小于 F113 所设定的目标频率。
- ・变频器开始运行时从起动频率开始起动,运行过程当中如果给定频率小于下限频率,则变频器一 直运行于下限频率,直到变频器停机或给定频率大于下限频率。
- ·上限频率,下限频率应根据实际受控电机铭牌参数和运行工况谨慎设定,避免电机长时间在低频下工作,否则会因过热而减少电机寿命。

F113 目标频率(Hz) 设置范围: F112~F111	出厂值: 50.00
-------------------------------	------------

·目标频率表示预设频率,即主频率源选择为"数字设定"时,该功能码值为变频器的频率数字设定初始值,在控制面板调速或者端子调速控制方式下,变频器起动后将自动运行至该设定频率。例如:变频器上电后,保持出厂值不变,按控制面板上的"运行"键,则变频器自 0Hz 运行至该功能码所设定的目标频率出厂值 50.00 Hz。

F115	第一加速时间(S) 第一减速时间(S)		
F117 F277	第二加速时间(S) 第二减速时间(S) 第三加速时间(S) 第三减速时间(S)	设置范围: 0.1~3000	出厂值:根据机型
F279	第四加速时间(S) 第四减速时间(S)		

- ·加减速时间参考基准为 F119 设定值。
- ・转速追踪时,加减速时间、下限频率及目标频率无效,追踪完成后按照设定加减速值运行到目标 频率值。

F119 加减速时间的参考值	设置范围: 0: 0~50.00Hz; 1: 0~F111	出厂值: 0
----------------	----------------------------------	--------

- ·F119=0 时,加速时间是指从 0Hz 加速到 50.00Hz 所用的时间;减速时间指从 50.00Hz 减速到 0Hz 所用的时间;
- ·F119=1 时,加速时间是指从 0Hz 加速到 F111 所用的时间;减速时间指从 F111 减速到 0Hz 所用的时间。

F120 正反转切换死区时间	设置范围: 0.0~3000	出厂值: 0.0
----------------	----------------	----------

- · 在 "正反转切换死区时间"内,如果给出 "停机"信号,可解除该等待时间。该功能适用于除自动循环运行之外的所有调速运行方式。
- ·设置该功能可减缓方向切换过程的电流冲击。
- ·转速追踪时,正反转死区时间无效,追踪完成后有效;

11. C/± ^	卑井田 ^ エホヒ 4 	□ 100 □ tt tk .L
汗ル 1目: ()	百卯伟!!(): 大公]: 但公	1 トリノ 及野学に
出厂值:0	置范围: 0: 无效 1: 有效	F122 反转禁止

- ·当 F122=1 时,此时系统不区分端子状态和 F202 设定的参数,只作正转运行,不作反转运行,也禁止正反转切换。如此时给定反转指令,则系统处于停机状态;若反转锁定(F202=1),无论是否选择转速追踪功能,变频器无输出。
- · 当 F122=1, F613=1, F614≥2, 若变频器获得正转指令, 电机还在反转滑行时, 待变频器正常检测 到滑行方向, 则反转减速至 0. 0Hz 再按照设定正转方向运行。

F123 组合调速负频率允许	设置范围: 0: 无效; 1: 有效	出厂值: 0
----------------	--------------------	--------

· 当组合调速运算频率出现负值时,此时若 F123=0 则变频器 OHz 运行;若 F123=1 则变频器按照此频率反转运行(注意:此功能受 F122 的限制)。

F124 点动频率(Hz)	设置范围: F112~F111	出厂值: 5.00
F125 点动加速时间(S)	设置范围: 0.1~3000	出厂值:根据机型
F126 点动减速时间(S)		

·分控制面板点动和端子点动。控制面板点动仅在停机状态有效 (需设置 F132 包含控制面板点动显示选项)。

端子点动在运行和停机状态均有效。

- ·在控制面板上进行点动操作(停机状态下):
- a: 按"方式"键,显示"HF-0",
- ·端子点动时,将"点动"端子(如DI1)与CM短接, 变频器即可运行到点动频率。

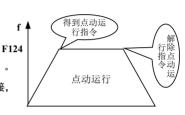


图 5-1 点动运行

F127/F129 频率回避点 A、B(Hz)	设置范围: 0.00~590.0	出厂值: 0.00
F128/F130 频率回避宽度 A、B(Hz)	设置范围: 0.00~2.50	出厂值: 0.00

关联功能码 F316~F323。

- · 点动控制时, 转速追踪无效。
- · 在电机运行过程中,有时在某个频率点附近会引起系统共振。为了避开共振,特设置此参数。
- · 当输出频率为该参数设定值时,变频器自 动跳开该回避点频率运行。
- · "回避点宽度"是指回避点上下频率的差值。例如,回避点频率为 20Hz,回避点宽度为±0.5Hz,则当变频器输出在 19.5~20.5Hz 范围时会自动跳开。
- ·在加、减速时,将直接通过而不会回避。
- •转速追踪时,频率回避功能失效;追踪完成后有效。

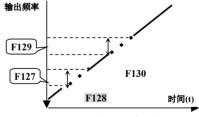


图 5-2 频率回避示意图

F131 运行显示 选项	设置范围: 0: 当前输出频率/功能码 1: 当前输出转速(rpm) 2: 输出电流(A) 4: 输出电压(V) 8: 直流母线电压(V) 16: PID 反馈值(%) 32: 温度(°C) 64: 计数值 128: 线速度 256: PID 设定值(%) 512: 保留 1024: 保留	出厂值: 0+1+2+4+8=15

- ·选择 1、2、4、8、16、32、64、128 中的某一个数值时,表示只选择了某一项显示内容。若要选择多项显示内容,只需将显示内容的数值相加得到的值作为 F131 的设定值即可。例如,要显示"当前输出转速"、"输出电流"、"PID 反馈值",只需将 F131 设成 19(1+2+16),其余显示内容就会被隐藏。
- ·当 F131=511 时,所有显示内容都可察看。其中"频率/功能码"项无论选择与否,都可察看。
- ·要察看各项显示内容,只需用"方式"键进行切换。
- ·F131 设置为任何值,在停机状态皆闪烁显示相应目标频率。
- · 各显示物理量的单位及表示方法如下:

目标转速为整数, 若超过 9999, 最后一位附加小数点。

电流显示 A *. * ; 母线电压显示 U***、输出电压显示 u***, 计数值****

温度 H**; 线速度 L***, 若超过 999, 附加一位小数点, 超过 9999, 附加两位小数点, 依此类推。 PID 设定值 o*. * PID 反馈值 b*. *

输出功率 *.* 输出转矩 *.*

		设置范围:	
		0: 频率/功能码;	
		1:控制面板点动;	
F132 停机显示选项	2: 目标转速 (rpm);	出厂值:	
	4: 直流母线电压(V);	0+2+4=6	
		8: PID 反馈值(%);	
	16: 温度(℃);		
		32: 计数值;	

		64: PID 设定值(%) 128: 保留 256: 保留 512: 设定转矩(%)	
F133	被拖动系统传动	设置范围: 0.10~200.0	出厂值: 1.00
F134	传动轮半径(m)	设置范围: 0.001~1.000	出厂值: 0.001

• 关于转速和线速度的计算

例如,上限频率 F111=50.00Hz,电机极数 F804=4,传动比 F133=1.00,传动轴半径 R=0.05 米,则:传动轴周长: 2π R= $2\times3.14\times0.05=0.314(米);$

传动轴转速: 60×运行频率/(极对数×传动比)=60×50/(2×1.00)=1500rpm;

末极线速度: 转速×周长=1500×0.314=471(米/分钟)。

F136	认伴	ひ罢节用。0°.40	
F136 特差	竹法	设置范围: 0~10	山/14:∪

· WWF 控制下,电机转子的转速随着负载的增加会减少。为了保证电机在额定负载下,其转子转速接近同步转速,可以按照设定的频率补偿值,进行转差补偿:

·转差补偿在转速追踪过程中失效,在电压恢复过程中按照设定加减速值运行到目标频率期间有效。

RETIDER ELEMETICAL	1.电压 医支足性 1.1.发热 及足加燃还	<u>但是自身自协从于7015万人</u>
F137 转矩补偿方式	设置范围: 0: 直线型补偿 1: 次方型补偿 2: 自定义多点式补偿 3: 自动转矩补偿 4: V/F 分离	出厂值: 0
F138 直线型补偿	设置范围: 1~20	出厂值:根据机型
F139 次方型补偿	设置范围: 1: 1.5 次方曲线补偿 2: 1.8 次方曲线补偿 3: 1.9 次方曲线补偿 4: 2 次方曲线补偿 5: 保留	出厂值:1

- · 为了补偿 VVVF 控制低频转矩特性,可以对低频时变频器的输出电压做一些提升补偿;
- ·F137=0 选择直线补偿,适用于普通恒转矩负载;
- ·F137=1 选择次方曲线补偿,适用于风机、水泵等类负载;
- ·F137=2 选择自定义多点曲线补偿,适合于脱水机、离心机等特殊负载;
- ·对于较大负载,建议增大此参数,在负荷较轻时可减小此参数设置;
- ·转矩提升过大, 电机容易过热, 变频器容易过电流, 请一边确认电机电流一边缓慢进行设置。

- ·F137=3 选择自动转矩补偿,能自动调整低频时需要的力矩,减小电机转差率,使转子转速接近同步转速,同时可抑制电机的震荡,但需用客户准确设置电机的功率、转速、极数、电机的额定电流和定子电阻(可通过变频器自动测量获得),具体操作方法详见"电机参数测量操作流程"一节。
- ·F137=4 V/F 分离, 此时变频器输出电压和频率分离, 输出频率由频率源决定, 输出电压由 V/F 分离给定电压通道 (F671) 决定。
- ·转矩补偿在转速追踪过程中失效,在电压恢复过程中按照设定加减速值运行到目标频率期间有效。

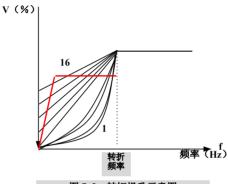
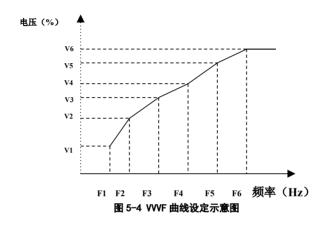



图 5-3 转矩提升示意图

F140 电压补偿拐点频率(Hz)	设置范围: 0~F142	出厂值: 1.00
F141 电压补偿 1 (%)	设置范围: 0~30	出厂值:根据机型
F142 自定义频率点 F2(Hz)	设置范围: F140~F144	出厂值: 5.00
F143 自定义电压点 V2(%)	设置范围: 0~100	出厂值: 13
F144 自定义频率点 F3(Hz)	设置范围: F142~F146	出厂值: 10.00
F145 自定义电压点 V3(%)	设置范围: 0~100	出厂值: 24
F146 自定义频率点 F4(Hz)	设置范围: F144~F148	出厂值: 20.00
F147 自定义电压点 V4(%)	设置范围: 0~100	出厂值: 45
F148 自定义频率点 F5(Hz)	设置范围: F146~F150	出厂值: 30.00
F149 自定义电压点 V5(%)	设置范围: 0~100	出厂值: 63
F150 自定义频率点 F6(Hz)	设置范围: F148~F810	出厂值: 40.00
F151 自定义电压点 V6(%)	设置范围: 0~100	出厂值: 81

- ·F140~F151 十二个参数定义多段 VVVF 曲线:
- · VVVF 曲线的设定值通常根据电机的负载特性来设定:
- ·提示: V2<V3<V4<V5<V6, F2<F3<F4<F5<F6。低频时电压设定过高可能会导致电机过热甚至烧毁, 变频器本身可能会过电流失速或者过电流保护。
- · 多段 V/F 曲线在转速追踪过程中无效,在追踪完成后按照设定 V/F 参数加减速至有效目标频率。

F152 转折频率对应输出电压(%) 设置范围: 0~100	出厂值: 100
--------------------------------	----------

- ·该功能可以满足一些特殊负载的要求,例如要求变频器输出 300Hz 时,电压输出 200V(假设变频器电源电压为 380V),则可将 F810 电机额定频率设置为 300Hz,而将 F152 设置为(200÷380) ×100=52.6,需要取整数值,将 F152 设置为 53 即可。
- ·需要注意负载电机的铭牌参数,避免其超过额定电压工作而烧坏电机,或超过其额定频率而引起 意外状况。

F153 载波频率设定	设置范围:根据机型	出厂值:根据机型

- ·该功能码用于调整变频器的载波频率。通过调整载波频率可以降低电机噪声,避开机械系统的共振点,减小线路对地漏电流及减小变频器产生的干扰。
- 当载波频率低时,来自电机的噪音虽然会增大,但是泄漏到大地的电流会减小,此时电机损耗增加,电机温升增加,但变频器本身的温升会减小。
- · 当载波频率高时,电机噪声会减小,损耗降低,温升减小,但变频器损耗增加,变频器温升增加, 干扰增加。
- · 将变频器的输出频率调整为高频率使用时,请调大载波频率的设定值。

调整载波频率,对性能的影响可参考下表:

低	→	高
大	→	小
差	→	好
高	→	低
低	→	高
小	→	大
小	→	大
	大 差 高 低 小	大 → 差 → 高 → 低 → 小 →

F154		设置范围:	
	自动电压调整	0: 无效	出厂值: 0
	日初电压师走	1: 始终有效	щ/ ш. ∨
		2: 仅在减速过程中无效	

·增加自动电压调整功能,可以达到稳定输出电压的目的,当输入电压升高时,输出电压不发生变化,但由于内部增加 PI 调节器,会影响减速时间,当现场工况对减速时间要求较严格时,请选择 F154=2,屏蔽减速过程中自动电压调整功能。

F155	数字辅助频率设定(Hz)	设置范围: 0~F111	出厂值: 0
F156	数字辅助频率极性设定	设置范围: 0~1	出厂值: 0
F157	辅助频率查看		
F158	辅助频率极性查看		

- · 在组合调速方式下,且 F204=0 辅助频率来源为数字给定记忆(控制面板调速)时,由 F155, F156 给定辅助频率的初始给定值和极性(方向)。
- ·F157, F158 用来查看辅助频率的频率值和方向。

例如: 当 F203=1, F204=0, F207=1 时,模拟量给定的频率为 15Hz,变频器要求运行到 20Hz,可以通过控制面板的上升、下降键由 15Hz 调节到 20Hz,也可以直接把 F155 设置为 5Hz,F156=0 代表正转(F156=1 代表反转),这样可以直接运行到 20Hz。

F159	随机载波选择	设置范围: 0: 禁止; 1: 允许	出厂值: 1

- ·该功能码用于选择变频器是随机载波,还是固定载波运行,当 F159=0 时,变频器按照 F153 选择的固定载波运行;当 F159=1 时,变频器按照随机载波运行。
- · 使用随机载波时,变频器输出力矩会提高,但噪音会变大; 固定载波时, 噪音会降低, 但力矩会 变低, 因此请根据实际情况进行选择。

F160 恢复出厂值	设置范围: 0: 不恢复出厂值;	出厂值: 0
F100 恢复山/ 恒	1:恢复出厂值	山/ 胆: 0

- ·变频器参数发生混乱时,需要恢复出厂设定值。这时,将 F160 设置为 1 即可。"恢复出厂值"操作完毕,F160 的值自动变为 0。
- ·恢复出厂值对参数表中"更改栏"标识"〇"的功能码不起作用。这些功能码在出厂时已经调试好,建议不要改动。

图 5-5 恢复出厂值

5.2 运行控制

	.=			
		设置范围: 0:	控制面板指令;	
		1:	端子指令;	
F200 起	己动指令来源	2:	控制面板+端子;	出厂值:4
		3:	Modbus;	
		4:	控制面板+端子+Modbus	
		设置范围: 0:	控制面板指令;	
		1:	端子指令;	
F201 停	亭机指令来源	2:	控制面板+端子;	出厂值:4
		3:	Modbus;	
		4:	控制面板+端子+Modbus	

- ·F200、F201 选择变频器控制命令的来源。
- · 变频器控制命令包括: 起动、停机、正转、反转、点动等;
- · "控制面板指令"是指由控制面板的"运行"、"停/复"键给定起动、停机指令;
- · "端子指令"是由 F316~F323 定义的"运行"、"停机"和"启停"端子给定起动和停机指令。 例如使用"端子指令"时,定义的"运行"端子与 CM 短接即可起动变频器。
- · 当选择 F200=3、F201=3 的时候,运行命令由上位机通过通讯方式给出。
- · 当 F200=2、F201=2 的时候则控制面板指令和端子指令同时有效, F200=4、F201=4 依次类推。

注: 端子指令不包含 DI 端子"自由停机"指令,仅包含"运行"、"停机"和"启停"指令。

	设置范围: 0: 正转锁定;	
F202 方向给定方式	1: 反转锁定;	出厂值:0
	2: 端子给定	

- ·该功能码确定变频器的运行方向或与其他具有方向设定功能的调速方式共同确定变频器的运转方向,当 F500=2 选择段速自动循环时,不受该功能码限制;当 F208≠0 时,亦不受该功能码限制。
- · 当选择没有方向控制的调速方式时, 变频器运行方向由该功能码确定, 例如控制面板调速;
- · 当选择有方向给定的调速方式时, 变频器的运转方向由两者共同确定, 见下表:

F202 给定方向	其他方式给定方向	最终方向	备注
0	0	0	
0	1	1	0:表示正转
1	0	1	1:表示反转
1	1	0	

	_		
	设置范围:	0:数字给定记忆;	
	1: 外部模拟量 AI1;	1: 外部模拟量 AI1;	
		2: 外部模拟量 AI2;	
		3: 输入脉冲给定;	
5000 → 佐泰本海 V	主频率来源 X	4: 段速调节;	出厂值:0
F203 主频率来源 X		5: 数字给定不记忆;	
		6: 模拟量 AI3;	
		7: 保留;	
		8: 保留;	
		9: PID 调节 10: Modbus	

- · 该功能码设定变频器主给定频率的输入来源:
- 0: 数字给定记忆

初始值为 F113 的值,可通过控制面板的上升、下降键或 UP/DOWN 端子调节频率。

记忆指停机后目标频率为运行时的频率、变频器再次运行、依照该目标频率运行。

若变频器掉电后重新上电时,需要记忆上次掉电前的频率,则请将 F220 设置为 1,即将掉电频率记忆设置为有效。

·1: 外部模拟量 AI1 2: 外部模拟量 AI2

指频率由模拟量输入端子 AI1 和 AI2 来确定,模拟量类型可以是电流型($0\sim20$ mA 或者 $4\sim20$ mA),也可以是电压型($0\sim5$ V 或者 $0\sim10$ V),以上不同选择需要通过拨码开关来实现,请根据实际情况调整拨码开关的位置,详见图 4-4 与表 4-2。

在产品出厂时,模拟量输入通道 AI1 为直流电压输入,电压范围 $0\sim10V$;模拟量通道 AI2 为直流电流输入,输入范围为 $0\sim20$ mA。若需要 $4\sim20$ mA 信号输入,请设置模拟量输入下限 F406=2,其输入电阻为 50 欧姆,若其存在误差,请作适当调整。

・3: 输入脉冲给定

频率给定通过脉冲给定。给定的脉冲只能通过 DI1 端子输入,最高脉冲频率为 100K,相关功能码 F440~F446。

• 4: 段谏调谏

选择多段速运行方式,需要设置 F316~F323 段速端子和设置多段速区功能码,此时变频器运行频率由多段速端子或自动循环频率给定。

•5: 数字给定不记忆

初始值为 F113 的值。可通过上升下降键或 UP/DOWN 端子调节频率:

不记忆指停机后目标频率恢复到 F113 的值,掉电后重新上电,初始值同样为 F113 预设值,无论 F220 设置为有效还是无效。

· 6: 模拟量 AI3

频率由控制面板上的电位器给定,在使用远控盒电位器调速时,还需要将参数 F422 设置为 1。

·9: PID 调节

选择 PID 调节控制。变频器运行频率频率为 PID 作用后的频率值。其中 PID 的给定源、给定量、 反馈源等含义请参考 PID 参数区功能介绍。 · 10: Modbus

Modbus 通讯给定,指主频率源由上位机通过通讯方式给定,上位机通过修改 F113 的值,实现调速功能。

	设置范围: 0: 数字给定记忆;	
	1: 外部模拟量 AI1;	
	2: 外部模拟量 AI2;	
F204 辅助频率来源 Y	3: 输入脉冲给定;	出厂值:0
	4: 段速调节;	
	5: PID 调节;	
	6: 模拟量 AI3	

- ·辅助频率源 Y 在作为独立的频率给定通道时,其用法与主频率源 X 相同。
- · 当 F204=0 时, 其初始值由 F155 给定, 独立调速时 F156 极性设置无效。
- · 当 F207=1, 3 组合调速且辅助频率源选择数字给定记忆 F204=0 时, F155 给定辅助频率初始值, F156 给定辅助频率极性, F157、F158 可以查看辅助频率的初始值和极性。
- · 当辅助频率来源为模拟输入给定(AI1、AI2)时,其频率调节范围由 F205 和 F206 共同确定。
- ·提示:辅助频率来源 Y 与主频率来源 X 设定值不能一样,即主、辅频率源不能使用同一个频率给 定通道。

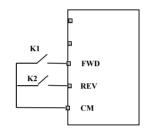
F205 辅助	カ频率 ϒ 范围选择	设置范围: 0: 相对于上限频率; 1: 相对于主频率 X	出厂值: 0
F206 辅助	∫频率Υ范围(%)	设置范围: 0~100	出厂值: 100

- · 当频率来源选择为组合调速叠加给定时,使用 F205、F206 来确定辅助频率源的调节范围;
- ·F205 用于确定该范围相对的对象,若为相对于主频率源,则其范围将随着主频率源 X 的变化而变化。

100		
	设置范围:	
	0: X;	
	1: X+Y;	
	2:XorY(端子切换,不切换时 X 优先于 Y);	
	3: XorX+Y(端子切换);	
F207 频率源选择	4: 段速和模拟量组合;	出厂值:0
	5: X-Y;	
	6: X+Y-Y _{MAX} *50%;	
	9: X/Y;	
	10: Max(X, Y)	
	11: Min(X, Y)	

- · 选择频率的给定通道。通过主频源 X 和辅助频率源 Y 的组合实现频率给定。
- ·F207=0. 频率由主频率源给定。
- ·F207=1, X+Y 可实现主频率源与辅助频率源叠加给定, X 或 Y 可以是 PID 给定。
- ·F207=2. 主频率源与辅助频率源可通过将多功能端子定义为频率源切换端子进行切换。
- ·F207=3, 主频率给定与主、辅频率源叠加给定, 可以通过频率源切换端子切换, X 或 Y 不能是 PID 给定。
- ·F207=4, 主频率源的段速给完优先于辅频率源的模拟量给定。(只适用于 F203=4、F204=1)
- ·F207=5, X-Y 可实现主频率源与辅助频率源叠加给定, X 或 Y 不能是 PID 给定;
- ·F207=6, X+Y-Y_{MX}*50%可实现主频率源与辅助频率源叠加给定, X 或 Y 不能是 PID 给定, 当 F205=0 时, Y_{MX}=F111*F206: 当 F205=1 时, Y_{MX}=X*F206。
- ·F207=9. 目标频率为主频率 X 除以辅频率 Y。
- ·F207=10,目标频率为主频率 X 和辅频率 Y 的较大值。
- ·F207=11, 目标频率为主频率 X 和辅频率 Y 的较小值。

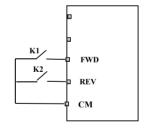
提示:


- 1. 当 F203=4, F204=1 时, F207=1 和 F207=4 的区别是 F207=1 是段速与模拟量相叠加,而 F207=4 则 是段速与模拟量同时给定则运行段速,段速给定撤销时,如果模拟量给定依然存在,则变频器依 照模拟量给定运行。
- 2. 通过 F207 的选择,可以实现频率给定方式之间的切换,如 PID 调节和模拟量、段速与模拟量给定切换、控制面板调节与模拟量给定等各种切换。
- 3. 段速的加减速时间由相应的段速加减速时间功能码设定;
- 4. 当段速参与组合调速时,优先执行段速加减速时间;若上电无段速信号时,则执行 F114, F115 给 定时间,在段速信号撤销时,保持撤销前段速的加减速时间。
- 5. 自动循环只可以独立运行,不能与其他调速方式组合使用。
- 6. 在 F207=2(X or Y 端子切换)的情况下,主频率不选择段速调节,则辅频率可以设置为自动循环 (F204=4、F500=2),通过定义的切换端子,在主频率定义的运行方式和辅频率定义的自动循环 之间自由切换。
- 7. 主频率与辅频率设置相同时, 仅主频率有效。
- 8. F207=6、F205=0、F206=100,则 X+Y-Y_{мx}*50%=X+Y-F111*50%,若 F207=6、F205=1、F206=100,则 X+Y-Y_{мx}*50%=X+Y-X*50%。

	设置范围: 0:	其他方式;	
	1:	两线式1;	
F208 端子二线 / 三	2:	两线式 2;	U.E.# 0
线运转控制	3:	三线式运转控制 1;	出厂值:0
	4:	三线式运转控制 2;	
	5:	方向脉冲起停;	

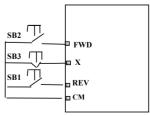
- · 当用户选择两线式/三线式控制时, F200, F201, F202, 不再有效。
- ·端子运行控制有五种模式,该功能码定义了通过外部端子控制变频器运行的五种模式。
- ·段速调速时 F208 设为 0. 若 F208 不为零时(选择二三线式时) F200. F201. F202 无效。
- · "FWD" 、 "REV" 、 "X" 是在 DI1~DI5 中编程指定的三个端子。
- 1: 两线式运转模式 1: 该模式为最为常用的两线式模式。由 FWD、REV 端子命令来决定电机的正反转。

如: "FWD"端子—"开":停止, "闭":正转运行 "REV"端子—"开":停止, "闭";反转运行 "CM"端子—公共端


K1	K2	运行命令
0	0	停止
1	0	正转
0	1	反转
1	1	停止

2: 两线式运转模式 2: 应用该模式时, FWD 为使能端子, 方向由 REV 的状态来确定。

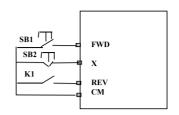
如: "FWD"端子— "开": 停止, "闭": 运行 "REV"端子— "开": 正转, "闭": 反转 "CM"端子——公共端


K1	K2	运行命令
0	0	停止
0	1	停止
1	0	正转
1	1	反转

3: 三线式运转模式 1:

该模式下,X端子为使能端子,方向分别由FWD、REV控制。脉冲有效。 停车时需断开X端子。

SB3:停止按钮 SB2:正转按钮 SB1:反转按钮



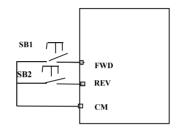
4: 三线式运转模式 2: 该模式下使能端子为 X, 运行命令由 FWD 来给出, 方向由 REV 状态来决定, 停机命令诵讨断开 X 来完成。

SB1:运行按钮

SB2:停止按钮

K1:方向开关。开:正转; 闭:反

5: 方向脉冲控制起停:


"FWD"端子—(脉冲起停信号:正转/停止)

"REV"端子—(脉冲起停信号:反转/停止)

"CM"端子—公共端

注: 上图是以 NPN 模式举例;

SB1 脉冲触发正转运行,再次脉冲触发停止运行; SB2 脉冲触发反转运行,再次脉冲触发停止运行;

F209 电机停机方式选择	设置范围: 0: 按减速时间停机;	出厂值:0	
1 207	电机序机力式选择	1: 自由停机	ш/ Щ: О

- · 当输入停止信号时,可通过该功能码设置停机方式;
- · F209=0 按减速时间停机

此时,变频器按照设定的减速时间来降低输出频率,频率降为零后停机,为通常使用的停机方式;

・F209=1 自由停机

停机指令有效后, 变频器立即停止输出。电机按照机械惯性自由停机。

F210 频率显示精度(Hz)	设置范围: 0.01~10.00	出厂值: 0.01
-----------------	------------------	-----------

·在变频器运行或"RUN"指示灯闪烁情况下,使用控制面板调速调速时,通过该功能码设置频率变化的精度,设置范围从 0.01 到 10.00,例如:当 F210=0.5 时,每调整一下▲和▼键,则频率上升或者下降 0.5Hz,运行时有效。

注: 当频率源为数字给定时, UP/DOWN 端子在变频器任意状态均可调速。且调节精度受 F210 控制。 F211 数字调束快慢 设置范围: 0.01~100.0 出厂值: 5.00

- · 当按住 UP/DOWN 端子时、F211 用于调节预设目标频率增减的快慢。
- · 实际应用中,若要求通过 UP/DOWN 端子调节预设频率与实际运行频率的加减速时间保持一致,请 50(Hz) 50.00(Hz)

参考公式 F211= $\overline{F114}$ 设置 F211 的值。例如:F114=5.0 S, F211= $\overline{5.0(s)}$ =10 (Hz/S)。

F212 方向记忆	设置范围: 0: 无效; 1: 有效	出厂值:0
1212 / 11-11010	及旦儿园。	ш, ш. ч

- ·在三线式运行模式 1(F208=3) 方式下有效。
- ·F212=0 时,在停机、故障复位及掉电后重新上电情况下,不记忆运行方向。
- ·F212=1 时,在停机、故障复位及掉电后重新上电,当有运行信号却没有重新给定方向信号时,则 按照记忆的方向运行。

F213 重新上电自起动	设置范围: 0: 无效; 1: 有效	出厂值:0
F214 复位后是否自起动	设置范围: 0: 无效; 1: 有效	出厂值:0

·F213 设定重新上电是否自起动

F213=1, 重新上电自起动有效,变频器在掉电后之后重新上电,按照掉电之前的运行模式,经过F215 设定的时间之后自动运行,如果F220=0 频率记忆无效,则按照F113 的设置自动运行;F213=0.重新上电后,变频器不会自动运行,需给定运行指令。

·F214 设定故障复位后是否自起动功能

当 F214=1 时,变频器故障后,将在 F217 设定的故障复位延迟时间后自动复位,复位后经过 F215 设定的时间间隔,变频器将自动运行:

如果 F220 设置了记忆有效,则按照故障之前的频率运行,否则依照 F113 设定的频率运行;在运行状态下出现故障才会自动复位且自起动,在停机状态下出现故障仅会自动复位;当 F214=0 时,变频器故障后显示故障代码,需手动复位;

F215 自起动延时时间(S)	设置范围: 0.1~3000	出厂值: 60.0
-----------------	----------------	-----------

·F215 为 F213 重新上电自起动和 F214 故障复位自起动设定延时时间, 范围 0.15~3000.0S。

F216 故障重复自起动次数	设置范围: 0~5	出厂值: 0
F217 故障复位延迟时间(S)	设置范围: 0.0~10.0	出厂值: 3.0
F219 通讯写 EEPROM	0: 允许	出厂值: 1
F219 通机与 EEFROW	1: 禁止	山/ 旭: '

- F216 设置故障自起动最多动作次数,超过该功能码所设置的值,变频器故障后将不会自动复位, 也不会自动起动,故障消失后需要手动复位,手动复位后,变频器需要给定运行指令,方能运行;
- ·F217 设置故障后的复位延时时间,即限制故障与复位之间的时间间隔。
- ·F219 恢复出厂不可恢复

F220 频率记忆功能	设置范围: 0: 无效; 1: 有效	出厂值:0	

- ·F220 设置掉电频率记忆功能是否有效,该功能码对 F213 和 F214 均有效,即对于重新上电自起动和故障复位自起动,是否记忆掉电或者故障前的运行状态,由该功能码确定。
- · 掉电频率记忆功能,对数字给定的主频率和辅频率有效,因数字给定辅频率有正负极性所以存储在 F155,F156 两个功能码内。

表 5-1 组合调速表

F204 F203	0 数字给 定记忆	1 外部模 拟量 AI1	2 外部模 拟量 AI2	3 输入脉冲给定	4 端子段 速调节	5 PID 调 节	6 模拟量 AI3
0 数字给定记忆	0	•	•	•	•	•	0
1 外部模拟量 AI1	•	0	•	•	•	•	0
2 外部模拟量 AI2	•	•	0	•	•	•	0
3 输入脉冲给定	•	•	•	0	•	•	•
4 端子段速调节	•	•	•	•	0	•	•
5 数字给定	0	•	•	•	•	•	0
6 模拟量 AI3	•	•	•	•	•	•	0
9 PID 调节	•	•	•	•	•	0	0
10 Modbus	•	•	•	•	•	•	•

●: 可以相互组合; O: 不能组合

自动循环调速方式不能组合调速、若组合中含有自动循环调速方式、仅运行主调速方式。

F222 计数记忆选择	设置范围: 0: 无效; 1: 有效	出厂值:0
-------------	--------------------	-------

·F222 设置计数记忆功能是否有效, F222=1, 变频器掉电时记忆当前的计数值。

F224 目标频率低于下限处理	设置范围: 0: 停机; 1: 以下限频率运行	出厂值:0
-----------------	----------------------------	-------

- ·F224=0. 目标频率低于下限频率时. 变频器停机:
- ·F224=1,目标频率低于下限频率时,变频器以下限频率运行。

,	-,	
	设置范围:0:加减速过程无效;	
F226 频率回避处理模式	1: 减速过程无效;	出厂值:0
	2: 全程有效;	

- ·F226=0,加减速过程无效。仅在稳速过程中频率回避有效;
- ·F226=1, 减速过程无效。在加速和稳速过程中, 过频率回避点, 频率回避有效; 减速过程频率回避无效;
- ·F226=2,全程有效。即在加速、减速、稳速过程中频率回避均有效;
- ·其他功能码参见 F127~F130;
- 注: 在减速过程回避频率时, 频率回避宽度不宜过大。

5.3 多功能输入输出端子

5.3.1、数字多功能输出端子

F300	继电器表征输出	设置范围:0~40 参见表 5-2 多功能输出端子详细功能说明	出厂值: 1
F301	D01 表征输出		出厂值: 14
F302	D02 表征输出		出厂值: 5

· E800 系列 30kW 及以下变频器提供 1 路多功能数字量输出端子(无 D02 端子)

表 5-2 数字多功能输出端子详细功能说明:

设定	功能	说明	
0	无功能	输出端子无任何功能。	
1	变频器故障保护	当变频器发生故障时,此时输出 ON 信号。	
2	过特征频率 1	请参考 F307~F309 的说明。	
3	过特征频率 2	请参考 F307~F309 的说明。	
4	自由停机	给定停机信号,如果有延时时间,则在延时时间到达并变频器停机后,输出 ON 信号。在自由停机端子断开后,输出 OFF 信号。	
5	变频器运行中 1	表示变频器正在运行,此时输出 ON 信号。	
6	直流制动中	表示变频器正在直流制动中,此时输出 ON 信号(根据机型不同,此功能是否起作用,30kW 及以上无此表征)	
7	加减速时间切换	表示变频器正处于加减速时间切换中。	
8	设定计数值到达	变频器执行外部计数指令时,当计数值达到 F314 设定值,输出 0N 信号	
9	指定计数值到达	变频器执行外部计数指令时,当计数值达到 F315 设定值,输出 0N 信号	
10	变频器过载预报警	表示变频器过载后, 过载计时时间大于变频器过载时间 T*F704时, 输出 ON 信号, 在过载撤销或者过载触发之后该信号消失。	
11	电机过载预报警	表示电机过载后,过载计时时间大于电机过载时间 T*F705 时, 输出 ON 信号,在过载撤销或者过载触发之后该信号消失。	
12	失速中	在加减速过程失速,变频器由于失速而停止加减速,此时输出 ON 信号。	
13	运行准备就绪	主回路和控制回路电源建立,变频器保护功能不动作,变频器 处于可运行状态时,输出 ON 信号。	
14	变频器运行中 2	表示变频器正在运行,此时输出 ON 信号,OHz 运行认为是运行 状态,输出 ON 信号。	
15 频率到达输出 表示变频器运行到达所设定的目标频率 见 F312。		表示变频器运行到达所设定的目标频率, 此时输出 ON 信号, 参见 F312。	

16	过热预报警	当检测温度到设定值的 80%(F745)时,输出 ON 信号,保护触发后或者温度检测值回落到设定值 80%(F745)以下时信号消失。
17	过特征电流输出	表示变频器输出电流到达所设定特征电流,此时输出 ON 信号, 参见 F310、F311。
18	模拟量断线保护	在模拟量输入出现断线的情况下,输出 ON 信号,参见 F741。
19	欠载 1 预报警	表示电机欠载后,在保护开始计时到保护触发之间的一半时间时输出 ON 信号,也可用在供水系统中的缺水保护,参考 FA26、FA27
20	零电流检测输出	表示变频器输出电流降到零电流检测点,并持续 F755 设定时间后,输出 ON 信号,参考 F754, F755
21	上位机写 D01	写 1 表征输出有效
22	上位机写 D02	写 0 表征输出无效
23	上位机写 TA\TC	
24	看门狗输出表征	当变频器跳 Err6 看门狗保护时,输出有效
28	休眠	当前变频器进入休眠状态时,输出 ON 信号。 注:该状态并非故障,因此故障继电器无输出。
30	工频泵工作指示	表示有工频泵正在运行
31	变频泵工作指示	表示有变频泵正在运行
32	过极限压力指示	表示变频器 PID、负反馈运行时,反馈压力值超过 FA03 所设置的上限压力
33~ 40	保留	

·当 D01 选择开关电平输出时,可通过功能码 F301 自定义表 5-2 所需要的功能。

F303 D01 输出方式选择	设置范围:0:开关电平输出	山口佐. 6
F303 D01 输出方式选择	1: 脉冲输出	出)值: 0

· 当 D01 选择脉冲输出时,可作为高速脉冲输出端子,脉冲最高频率为 100KHz,相关功能码 F449、F450、F451、F452、F453。

F304 S 曲线起始段比例(%)	设置范围: 2.0~50.0	出厂值: 30.0
F305 S 曲线结束段比例(%)	设置范围: 2.0~50.0	出厂值: 30.0
F306 加减速方式	设置范围: 0: 直线加减速 1: S曲线加减速	出厂值: 0

F304、F305 设定值为该段时间占从当前频率到目标频率所用时间的百分比。

S 曲线加减速示意图见下图:

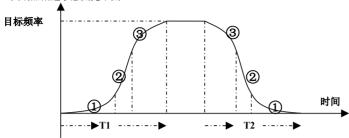


图 5-6 S 曲线加减速示意图

- T1: 从当前频率到目标频率的加速时间。
- T2: 从当前频率到目标频率的减速时间。

加速过程中: ①阶段, 加速斜率逐渐变大, ②阶段, 加速斜率不变; ③阶段, 加速斜率逐渐变缓。

F307 特征频率 1(Hz)	设置范围: F112~F111	出厂值: 10.00
F308 特征频率 2(Hz)		出厂值: 50.00
F309 特征频率宽度(%)	设置范围: 0~100	出厂值: 50

当 F300、F301=2,3,选择表征特征频率时,由该组功能码设定特征频率及其宽度;
 例如,设定 F301=2,F307=10,F309=10,变频器频率运行在大于等于F307时D01动作,变频器频率运行在小干(10-10*10%)=9 Hz时,D01 释放。

F310 特征电流 (A)	设置范围: 0~5000.0	出厂值:额定电流
F311 特征电流滞环宽度(%)	设置范围: 0~100	出厂值: 10

· 当 F300、F301=17, 选择表征特征电流时,由该组功能码设定特征电流及其滞环宽度; 例如,设定 F301=17, F310=100, F311=10,变频器电流在大于等于 F310 时 D01 动作,变频器电流在小于(100-100*10%)=90 A 时, D01 释放。

F312 频率到达阈值(Hz) 设置范围: 0.00~5.00 出厂值	
-------------------------------------	--

·F300、F301=15 时,由 F312 设定阈值范围;例如,F301=15,目标频率为 20Hz,F312=2,则,在 频率运行至 18Hz (20-2), D01 输出 ON 信号,直至频率到达目标频率。

F313 计数分频数	设置范围: 1~65000	出厂值: 1
F314 设定计数值	设置范围: F315~65000	出厂值: 1000
F315 指定计数值	设置范围: 1~F314	出厂值: 500

· 计数分频数是指实际脉冲输入数与变频器计数次数的比值。即

变频器计数次数 = 实际脉冲输入数 计数分频数

例如 F313=3 时,外部脉冲每输入 3 个,变频器计数一次。

- ·设定计数次数是指从 DI1 输入多少个脉冲时,被编程为"设定计数值到达"功能的输出端子(D01端子或继电器)输出一个计数宽度的脉冲。计数值到达"设定次数"后,计数重新开始。如图 5-7 所示:若 F313=1、F314=8,F301=8,当 DI1输入第8个脉冲时,D01输出一个指示信号。
- ·指定计数次数是指从 DI1 输入多少个脉冲时,被编程为"指定计数值到达"功能的输出端子(D01端子或继电器)输出一个脉冲,直到计数值到达"设定次数"为止。

如图 5-7 所示: 若 F313=1、F314=8, F315=5, F300=9, 当 DI1 输入第 5 个脉冲时, 继电器输出一个指示信号, 直到"设定计数次数 8"到达为止。

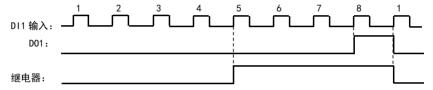


图 5-7 设定计数次数与指定计数次数示意图

5.3.2、多功能数字输入端子

5.3.2、多切能数于拥入编订			
F316 DI1 端子功能设定	设置范围:		出厂值: 11
F317 DI2 端子功能设定	0: 无功能	17: 三线式输入 X 使能	出厂值:9
F318 DI3 端子功能设定	1: 运行 2: 停机	18:加减速切换1 19:保留	出厂值: 15
F319 DI4 端子功能设定	2: 序机 3: 多段速 1	20: 保留	出厂值: 16
F320 D15 端子功能设定	4: 多段速 2 5: 多段速 3 6: 多段速 4 7: 复位 8: 自由停停机 9: 外禁止点加动 11: 正转 频率连点动 13: UP 频率率递增 14: DOWN 频率 15: FWD 正转 16: REV 反转	21: 频率源切换 22: 计数输入 23: 计数复位 30: 缺水信号 31: 有水信号 32: 消防压力切换 33: 紧急消防控制 34: 加减速切换 2 37: 常开触点热保护	出厂值: 7
F321 DI6 端子功能设定			出厂值:8
F322 DI7 端子功能设定			出厂值:1
F323 D18 端子功能设定			出厂值:2

- ·此参数用于设定数字多功能输入端子对应的功能。
- · 端子的自由停机和外部急停均为最高优先极。

表 5-3 数字多功能输入端子功能详细说明:

设定值	功能	说明
0	无功能	即使有信号输入,变频器也不动作。可以将未使用的端子设定无功能,防止误动作。
1	运行	当起动指令来源为端子或者端子组合时,该端子有效,则执 行运行功能,与控制面板的"运行"键功能相当。
2	停机 当停机指令来源为端子或者端子组合时,该端子有效,则抗 停机 行停机功能,与控制面板的"停/复"键功能相当。	
3	多段速 1	可以通过该组端子的数字状态组合, 共可实现 15 段速, 详细
4	多段速 2	组合见附表 5-5。

	1	ı .
5	多段速 3	
6	多段速 4	
7	故障复位	故障复位功能,与控制面板上的"停/复"键功能相同。使用该功能可以实现远距离故障复位。
8	自由停机	变频器封锁输出,电机停机过程不受变频器控制。对于惯量大的负载而且对停机时间没有要求时,经常采用此方法。该方式与 F209 所述的自由停机含义是一样的。
9	外部急停	当外部故障信号(常开)送给变频器后,变频器报出故障并停机。
10	禁止加减速	保证变频器不受外来信号影响(停机命令除外),维持当前输出频率。
11	正转点动	 点动正转运行和点动反转运行。点动运行时频率、电动加减速时间
12	反转点动	参见 F124、F125、F126 的详细说明。
13	UP 频率递增	在频率源设定为数字设定时,可以上下调节设定频率,其速率由 F211
14	DOWN 频率递减	设定。
15	"FWD"正转运 行	当起停指令来源为端子或者端子组合时,通过外部端子来控制变频
16	"REV"反转运 行	器正转与反转。
17	三线式输入 X 使能	选择该功能时,配合"FWD"、"REV"、"CM"端子实现三线式控制,参见 F208 二/三线式运行。
18	加减速时间切换	选择该功能有效时,则切换至第二加减速时间,第二件加减速时间 设定参见 F116、F117。
21	频率源切换	当频率源选择 F207=2 时,通过此端子来进行主频率源 X 和辅助频率 源 Y 的切换;当频率源选择 F207=3 时,通过此端子来进行主频率源 X 和(主频率源 X+辅助频率源 Y)的切换。
22	计数输入	内置计数器的计数脉冲输入口。注意,使用脉冲输入功能时,如使用脉冲输入调速,使用脉冲输入作为 PID 给定源等,需要将 F316 设置为 22。
23	计数复位	将端子计数值清零
30	缺水信号	PID 控制时, FA26 选择 1, 对应端子有信号,变频器进入保护状态
31	有水信号	PID 控制时, FA26 选择 1, 对应端子有信号, 变频器解除缺水保护状态
32	消防压力切换	PID 控制时,该端子有效,PID 设定值切换到消防压力设定(FA58)

33	紧急消防控制	紧急消防模式(FA59)有效, 且该端子有效时,进入紧急消防模式
34	加减速时间切换	参见表 5-4 加减速时间选择。
37	常开触点热保护	多功能输入端子设置为 37 时,外接常开热保护继电器,当触点闭合时,变频器处于运行状态时跳 0H1 保护。
38	常闭触点热保护	多功能输入端子设置为 38 时,外接常闭热保护继电器,当触点断开时,变频器处于运行状态跳 0H1 保护
53	看门狗	详见看门狗定时时间(F326)说明,在 F326 设定时间内,必须有低电平到高电平的变化,否则,显示看门狗故障(Err6),变频器按照 F327 的设置停止输出。
54	频率复位	频率复位端子有效,则当前目标频率转换为 F113 设定的值。
61	启停端子	启停端子无效时,为停机;启停端子有效时,为启动,当设为端子 启停时,且 F209=0 不影响键盘启停功能。该功能受 F200 和 F201 功 能限制。

表 5-4 加减速时间选择

K * 1848/2011/2014						
加减速时间切换2(34)	加减速时间切换1(18)	当前加减速时间选择	参见功能码			
0	0	第一加减速时间	F114、F115			
0	1	第二加减速时间	F116、F117			
1	0	第三加减速时间	F277、F278			
1	1	第四加减速时间	F279、F280			

表 5-5 多段速功能说明

K4	К3	K2	K1	频率设定	对应参数
0	0	0	0	无	无
0	0	0	1	多段速1	F504/F519/F534/F549/F557/F565
0	0	1	0	多段速 2	F505/F520/F535/F550/F558/F566
0	0	1	1	多段速3	F506/F521/F536/F551/F559/F567
0	1	0	0	多段速 4	F507/F522/F537/F552/F560/F568
0	1	0	1	多段速5	F508/F523/F538/F553/F561/F569
0	1	1	0	多段速 6	F509/F524/F539/F554/F562/F570
0	1	1	1	多段速7	F510/F525/F540/F555/F563/F571
1	0	0	0	多段速8	F511/F526/F541/F556/F564/F572
1	0	0	1	多段速 9	F512/F527/F542/F573
1	0	1	0	多段速 10	F513/F528/F543/F574
1	0	1	1	多段速 11	F514/F529/F544/F575

_						
	1	1	0	0	多段速 12	F515/F530/F545/F576
	1	1	0	1	多段速 13	F516/F531/F546/F577
	1	1	1	0	多段速 14	F517/F532/F547/F578
	1	1	1	1	多段速 15	F518/F533/F548/F579

- 注: 1、K4 表示多段速端子 4, K3 表示多段速端子 3, K2 表示多段速端子 2, K1 表示多段速端子 1。 2、表中 0=0FF. 1=0N。
- · 当多功能数字输入端子设置为 8、9 自由停机端子和外部急停端子时, 由该组功能码设定端子的逻

F324	自由停机端子逻辑	设置范围: 0: 正逻辑	出厂值:0
F325	外部急停端子逻辑	1: 负逻辑	出厂值: 0
F326	看门狗定时时间(S)	设置范围: 0.0: 看门狗无效 0.1~3000	出厂值: 10.0
F327	看门狗停机选择	设置范围: 0: 立即停机 1: 减速停机	出厂值: 0
F328	端子滤波次数	设置范围: 1~100	出厂值: 20

辑电平。

- ·F324、F325=0 为正逻辑,选择 NPN 模式时,当输入低电平,端子输入有效;选择 PNP 模式时,当输入高电平,端子输入有效。与其它端子有效电平相同。
- ·F324、F325=1 为负逻辑,选择 NPN 模式时,当输入高电平,端子输入有效;选择 PNP 模式时,当输入低电平,端子输入有效。与其它端子有效电平相反。
- ·F326 看门狗信号输入间隔时间,在变频器运行状态下,当 F327=0 时,若在设定时间内无上升沿,则变频器停止输出,同时跳 Err6,看门狗数字输出表征有效;当 F327=1 时,若在设定时间内无上升沿,则变频器按设定减速时间停机,停机后跳 Err6,看门狗数字输出表征有效。
- ·若F326= 0.0,则看门狗无效。

F330 数字输入端子状态显示		只读
-----------------	--	----

F330 用于显示数字输入端子(DIX)状态,当功能码设到F330,按下设置时,即可显示 DIX端子的状态。

下图为四个数码管对 DIX 数字输入端子状态的指示 , 上下两段数码管分别指示端子无效与有效:

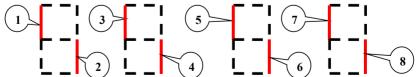


图 5-8 数字输入端子状态示意图

上图的实线表示数码管该段为亮。

- (1)为 DI1 无效(2)为 DI2 有效(3)为 DI3 无效(4)为 DI4 有效(5)为 DI5 无效(6)为 DI6 有效
- (7)为 DI7 无效(8)为 DI8 有效

以数字量 0~4095 显示当前模拟量的值

F331	监视模拟量 AI1	只读
F332	监视模拟量 AI2	只读
F333	监视模拟量 AI3	只读

输出端子诊断

F335	继电器输出诊断	设置范围	出厂值:0
F336	D01 输出诊断	0: 输出无效 1: 输出有效	出厂值:0
F337	D02 输出诊断		出厂值:0

在变频器正常停机时,显示功能码值的状态下,使用键盘上升和下降键检测 D01、D02、继电器输出是否正常。按上升键,输出有效,松开按键处于保持状态,按下降键,若输出有效则置输出无效,松开按键处于保持状态。若在操作过程中按了 E 键,则记忆当前功能码值。退出功能码值显示状态后,恢复端子原有输出状态。

F338 A01 输出诊断	设置范围: 0~4095	出厂值: 0
F339 A02 输出诊断	设置范围: 0~4095	出厂值:0

• 在变频器正常停机时,显示功能码值的状态下,使用键盘上升和下降键检测 A01、A02 是否正常。按上升键,输出模拟量增加,按下降键,输出模拟量减小,松开按键处于保持状态。若在操作过程中按了设置键,则记忆当前功能码值。退出功能码值显示状态后,恢复端子原有输出状态。

	设置范围: 0: 无效	
	1: DI1 负逻辑	
	2: DI2 负逻辑	
	4: DI3 负逻辑	
F340 端子负逻辑选择	8: DI4 负逻辑	出厂值:0
	16: DI5 负逻辑	
	32: DI6 负逻辑	
	64: DI7 负逻辑	
	128: DI8 负逻辑	

- ▶ F340 用于设置 DI 端子的逻辑。
- 例如设定 DI1 为负逻辑,则 F340=1;设定 DI2 为负逻辑,则 F340=2;设定 DI1、DI4 都为负逻辑,则 F340=1+8=9,以此类推。

F343 DI1 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F344 DI2 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00

F345	DI3 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F346	DI4 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F347	DI5 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F348	DI6 闭合延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00

·F343~F348:分别对应 D11~D16 端子的闭合延时时间,即控制器检测到端子闭合信号以后,开始延时,待延时相应功能码设定时间以后,视为端子实际闭合,若延时时间未到,端子断开,视为端子一直处于断开状态:

F351	DI1 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F352	DI2 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F353	DI3 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F354	DI4 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F355	DI5 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00
F356	DI6 断开延时时间(S)	设置范围: 0.00~99.99	出厂值: 0.00

·F351~F356:分别对应 DI1~DI6 端子的断开延时时间,即控制器检测到端子断开信号以后,开始延时,待延时相应功能码设定时间以后,视为端子实际断开,若延时时间未到,端子闭合,视为端子一直处于闭合状态。

F359	停机指令优先级	设置范围: 0: 无效; 1: 有效	出厂值:0	
------	---------	--------------------	-------	--

· 当 F359=1 时,运行信号(运行端子、启停端子、FWD 正转、REV 反转、三线式 X 输入使能)一直有效时给停机信号,优先响应停机,若要再次运行时,需断开运行信号后重新再给才会运行。

F360 D0 端子负逻辑	设置范围: 0: 无效 1: D01 负逻辑 2: D02 负逻辑 4: 继电器 1	出厂值: 0
---------------	---	--------

- ·F360 用于 D0 端子负逻辑。
- ·例如设定 D01 为负逻辑,则 F360=1;设定 D02 为负逻辑,则 F360=2;设定继电器 1 为负逻辑,则 F360=4;若 D01、D02 均为负逻辑,则 F360=1+2=3,依此类推。

5.4 模拟量、脉冲输入输出

E800 系列变频器共提供 2 路模拟量输入通道和 2 路模拟量输出通道。

	==== 0.0 12 18 HP 18 18 18 18 18 18 18 18 18 18 18 18 18		
F400	AI1 通道输入下限(V)	设置范围: 0.00~F402	出厂值: 0.04
F401	AI1 输入下限对应设定	设置范围: 0.00~F403	出厂值: 1.00
F402	AI1 通道输入上限(V)	设置范围: F400~10.00	出厂值: 10.00
F403	AI1 输入上限对应设定	设置范围: Max(1.00, F401)~2.00	出厂值: 2.00
F404	AI1 通道比例增益 K1	设置范围: 0.0~10.0	出厂值: 1.0
F405	AI1 滤波时间常数(S)	设置范围: 0.10~10.00	出厂值: 0.10

在模拟量调速方式下,有时需要对输入模拟量的上下限、模拟量变化与输出频率的对应关系进行适当调整,才能达到满意的调速效果。

·F400、F402 设定模拟量的上下限

例如 F400=1、F402=8, 若模拟量输入电压低于 1V, 系统认为输入为零, 若输入电压超过 8V, 系统认为是 10V(以模拟量通道选择 0~10V 为例), 那么假设设置 F111=50, 上限频率设为 50Hz,则 1~8V 对应输出频率 0~50Hz;

· F405 设置滤波时间常数

滤波时间常数越大,模拟量检测越稳定,但精度会有所降低,可根据实际应用情况,作适当调节;

· F404 设定通道比例增益

若原 1V 对应 10Hz.则 F404=2 时,放大一倍,即 1V 对应 20Hz,以此类推;

·F401、F403 模拟量输入上下限对应设定

如果上限 F111=50,即上限频率设为 50Hz,通过该组功能码的设定,可以实现 $0\sim10V$ 模拟量输入电压对应-50Hz 输出频率,即设置 F401=0,F403=2,此时 0V 对应-50Hz,5V 对应 0Hz,10V 对应 50Hz,即上下限对应设定单位为%,大于 1 为正,小于 1 为负。至于运行方向,如果 F202 给定的方向是正转,则 $0\sim5V$ 对应的负频率为反转,反之亦然。

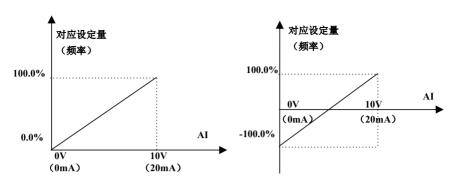


图 5-9 模拟给定与设定量的对应关系

·输入上限对应设定、输入下限对应设定的 单位为%,大于1.00为正,小于1.00为负(例如:F401=0.5表示-50%)。对应的设定基准,在组合调速方式下,模拟量为辅频率,且辅频率范围相对于主频率(即:F205=1)设定基准为"主频率 X"; 其余的情况,对应的设定基准为"上限频率"。如右图:

A=(F401-1)*设定

B=(F403-1)*设定

C= F400

D= F402

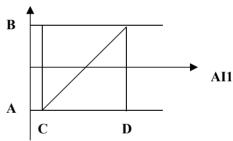


图 5-10 模拟给定与设定量的计算关系

F406	A12 通道输入下限(V)	设置范围: 0.00~F408	出厂值: 0.04
F407	AI2 输入下限对应设定	设置范围: 0.00~F409	出厂值: 1.00
F408	AI2 通道输入上限(V)	设置范围: F406~10.00	出厂值: 10.00
F409	AI2 输入上限对应设定	设置范围: Max(1.00, F407)~2.00	出厂值: 2.00
F410	A12 通道比例增益 K2	设置范围: 0.0~10.0	出厂值: 1.0

F411	A12 滤波时间常数(S)	设置范围: 0.1~10.00	出厂值: 0.1
F412	AI3 通道输入下限(V)	设置范围: 0.00~F414	出厂值: 0.05
F413	AI3 输入下限对应设定	设置范围: 0~F415	出厂值: 1.00
F414	AI3 通道输入上限(V)	设置范围: F412~10.00V	出厂值: 10.00
F415	AI3 输入上限对应设定	设置范围: Max(1.00, F413)~2.00	出厂值: 2.00
F416	AI3 通道比例增益 K3	设置范围: 0.0~10.0	出厂值: 1.0
F417	AI3 虑波时间常数(S)	设置范围: 0.01~10.00	出厂值: 0.10

- ·F406、F408、F412、F414 恢复出厂不可恢复
- · AI2 的功能与 AI1 的设定方法类似

F418	AI1 通道 OHz 电压死区(V)	设置范围: 0.00~1.00	出厂值: 0.00
F419	A12 通道 0Hz 电压死区(V)	设置范围: 0.00~1.00	出厂值: 0.00
F420	AI3 通道 OHz 电压死区(V)	设置范围: 0~0.50(正负)	出厂值: 0.00

·通过设定输入上下限对应设定功能,可以做到 0~5V 对应-50Hz ~50Hz (2.5V 对应 0Hz),那么在 F418、F419 这组功能码则设定 0Hz 对应的电压范围,例如 F418、F419=0.5,则表示自 2~3V 范围 内都对应着 0Hz,其中 2=2.5-0.5,3=2.5+0.5,即选择 F418、F419=N 的话,则 2.5±N 对应 0Hz,输入电压在此范围内变化变频器输出 0Hz。(在输入下限对应设定小于 1 时有效)

F421 显示面板选择	设置范围: 1: 本地远控自动切换 2: 本地远控都显示	出厂值: 1
F422 面板电位器选择	设置范围: 0:本地面板电位器 1:远控面板电位器	出厂值: 0

- ·F421用来选择操作显示面板类型,当F421设置为0时,本地操作面板有效,当F421设为1时,远控操作面板有效,30kW及以下变频器为了降低功耗,本地面板自动失效,当拔下远控操作面板时,本地操作面板自动生效:
- ·F422用于面板电位器来源的选择;

例如: F422=0, 本地面板上电位器有效。F422=1时, 远控面板上电位器有效; 如果设置F421=1, 选择了远控小盒调速, F422=0, 远控面板上电位器并不起作用。

- ·F421、F422的值恢复出厂时不能被初始化:
- ·远控面板为8芯网线接口;

E800 系列变频器提供两路模拟量输出诵道 A01、A02。

	2000 水外交然間提供行路(內)水主制品超過 1011 1028		
	设置范围:		
E422	A01 输出范围选择	0: 0∼5V;	出厂值: 1
F423	NOT 制山沙巴国龙洋	1: 0~10V 或 0~20mA	山/ և: '
		2: 4∼20mA	
F424	A01 输出最低电压对应频率(Hz)	设置范围: 0.0~F425	出厂值: 0.05
F425	A01 输出最高电压对应频率(Hz)	设置范围: F424~F111	出厂值: 50.00
F426	A01 输出补偿(%)	设置范围: 0~120	出厂值: 100

- F423 选择模拟量通道 A01 的输出范围, F423=0 对应模拟量输出范围为 0~5V; F423=1 对应模拟量输出范围为 0~10V 或者 0~20mA; F423=2 对应模拟量输出范围为 4~20mA; (选择电流输出时, 请将控制板上拨动开关 J5 拨到"I"位置):
- · F424、F425 设置输出电压范围 (0~5V 或者 0~10V) 与所表征频率范围的对应关系,例如 F423=0,F424=10,F425=120,则表示模拟量通道 A01 输出 0~5V,指示变频器运行在 10~120Hz,是线性关系。
- ·F426 设置 A01 的输出补偿。用户可以自由使用。以补偿模拟量的偏移:

	A CALL TO THE PARTY OF THE PART			
		设置范围:		
F427	A02 输出范围	0: 0∼20mA	出厂值:0	
		1: 4∼20mA		
F428	A02 输出最低对应频率(Hz)	设置范围: 0.0~F429	出厂值: 0.05	
F429	A02 输出最高对应频率(Hz)	设置范围: F428~F111	出厂值: 50.00	
F430	A02 输出补偿(%)	设置范围: 0~120%	出厂值: 100	

[·]AO2 的功能与设置方法与 AO1 类似,只是 AO2 输出的是电流信号,可以选择 $0\sim 20$ mA 或者 $4\sim 20$ mA。

F431 A01 输出信号选择	设置范围: 0:运行频率; 1:输出电流;	出厂值: 0
F432 A02 输出信号选择	2: 輸出电压; 3: 模拟量 AI1 4: 模拟量 AI2 5: 保留 6: 保留 7: 上位机控制 8: 目标频率	出厂值: 1

- ·F431、F432 设置模拟量通道所表征的对象:运行频率、输出电流、输出电压等;
- · 当表征输出电流时, 模拟量输出范围表征 0~2 倍的额定电流;
- · 当表征输出电压时,模拟量输出范围表征 0~额定输出电压。

F433	外接电压表满量程对应电流	设置范围:	出厂值: 2.00
F434	外接电流表满量程对应电流	0.01~5.00 倍额定电流	出厂值: 2.00

·F431=1, A01 通道表征电流时, F433 为外接电压型电流表的量程与变频器额定电流的比值。例如:外接电流表的量程为: 20A, 变频器额定电流为: 8A, 则 F433=20/8=2.50。

F437	模拟量滤波宽度	设置范围: 1~100	出厂值: 10	
			I	

·设定数值越大,模拟量检测越稳定,但响应速度会降低,请根据实际情况进行调整。

		设置范围:	
F438	模拟量 AI1 输入类型	0: 电压型	出厂值:0
		1: 电流型	
		设置范围:	
F439	模拟量 AI2 输入类型	0: 电压型	出厂值: 1
		1: 电流型	

- ·F438=0, AI1 接受输入为电压信号; F438=1, AI1 接受输入为电流信号。该功能仅适用机型为 T3 37kW 及以上功率。
- ·F439=0, AI2 接受输入为电压信号; F439=1, AI2 接受输入为电流信号。

F440	FI 输入脉冲最低频率(KHz)	设置范围: 0.00~F442	出厂值: 0.00
F441	FI 最低频率对应的设定	设置范围: 0.00~F443	出厂值: 1.00
F442	FI 输入脉冲最高频率(KHz)	设置范围: F440~100.00	出厂值: 10.00

F443	FI 最大频率对应的设定	设置范围: Max(1.00, F441)~2.00	出厂值: 2.00
F445	FI 输入脉冲滤波常数	设置范围: 0~1000	出厂值:0
F446	FI 通道 0Hz 频率死区(KHz)	设置范围: 0~F442(正负)	出厂值: 0.00
F448	FI 比例增益	设置范围: 0.001~2.000	出厂值: 1.000

- ·脉冲调速如同模拟量调速一样,需要对输入脉冲的最高、最低频率与输出频率的对应关系进行适当调整。才能达到满意的调速效果:
- ·F440、F442 设定输入脉冲最低、最高频率

例如 F440=0K、F442=10K,假设设置 F111=50, 上限频率设为 50Hz,则输入脉冲频率 0~10K 对应输出频率 0~50Hz;

·F445 设置输入脉冲滤波时间常数

滤波时间常数越大,脉冲检测越稳定,但精度会有所降低,可根据实际应用情况,作适当调节;

·F441、F443 脉冲输入最低、最高频率对应设定

如果 F111=50,即上限频率设为 50Hz,通过该组功能码的设定,可以实现 0~10K 脉冲输入对应 -50Hz~50Hz 输出频率,即设置 F441=0,F443=2,此时,0K 对应-50Hz,5K 对应 0Hz,10K 对应 50Hz;即最高、最低脉冲频率对应设定单位为%,大于 1 为正,小于 1 为负。

至于运行方向,如果 F202 给定的方向是正转,则 0~5K 对应的负频率为反转,反之亦然。

·F446 设定脉冲输入时 0Hz 频率死区

通过设定脉冲输入最高、最低频率对应设定功能,可以做到 $0\sim10$ K 对应-50Hz ~50 Hz ~50 Hz

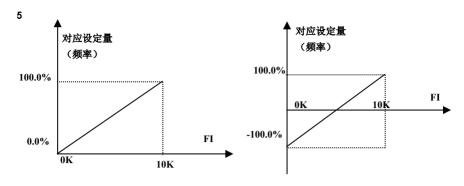


图 5-11 脉冲输入与设定量的对应关系

·脉冲输入最高频率对应设定、脉冲输入最低对应设定的单位为%,大于1.00为正,小于1.00为负(例如:F441=0.5表示-50%)。对应的设定基准,在组合调速方式下,脉冲输入为辅频率,且辅频率范围相对于主频率(即:F205=1)设定基准为"主频率X";其余的情况,对应的设定基准为"上限频率"。如右图:

A=(F441-1)*设定基准

B=(F443-1)*设定基准

C= F440

F= F442

(E-D)/2=F446

· F448 FI 比例増益

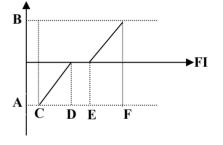


图 5-12 脉冲输入与设定量的计算关系

若原 1KHz 对应 5Hz,则 F448=2.000 时,放大一倍,即 1KHz 对应 10Hz,以此类推;

F449	F0 输出脉冲最高频率(KHz)	设置范围: 0.00~100.00	出厂值: 10.00
F450	F0 输出脉冲频率零偏系数(%)	设置范围: 0.0~100.0	出厂值: 0.0
F451	F0 输出脉冲频率增益	设置范围: 0.00~10.00	出厂值: 1.00

F453 F0 输出脉冲信号选择	设置范围: 0: 运行频率 1: 输出电流 2: 输出电压 3: 模拟量 Al1 4: 模拟量 Al2 5: 输入脉冲 6: 输出转矩 7: 上位机控制 8: 目标频率	出厂值: 0
------------------	--	--------

- · D01 端子定义为高速脉冲输出端子时, F449 用于设置输出脉冲的最高频率。
- ·若零偏系数用"b"表示,增益用"K"表示,脉冲频率实际输出用 Y表示,标准输出用 x表示,则实际输出为 Y=Kx+b;
- ・标准输出 x 是指输出脉冲最低、最高频率对应脉冲输出所表征的量从零到最大;
- ·F450 F0 输出脉冲零偏系数 100%对应最高输出脉冲频率(F449 设定值);
- ·F451 设置脉冲输出补偿,用户可以自由设置,以补偿脉冲输出的偏差;
- ·F453 设置脉冲输出所表征的对象:运行频率、输出电流、输出电压等;
- · 当表征输出电流时, 脉冲输出范围表征 0~2 倍的额定电流;
- · 当表征输出电压时, 脉冲输出范围表征 0~1.0 倍的额定输出电压。

F460	AI1 通道输入方式选择	设置范围: 0: 直线式 1: 折线式	出厂值: 0
F461	AI2 通道输入方式选择	设置范围: 0: 直线式 1: 折线式	出厂值:0
F462	AI1 插入点 A1 的电压值(V)	设置范围: F400~F464	出厂值: 2.00
F463	AI1 插入点 A1 对应设定	设置范围: F401~F465	出厂值: 1.20
F464	AI1 插入点 A2 的电压值(V)	设置范围: F462~F466	出厂值: 5.00
F465	AI1 插入点 A2 对应设定	设置范围: F463~F467	出厂值: 1.50
F466	AI1 插入点 A3 的电压值 (V)	设置范围: F464~F402	出厂值: 8.00
F467	AI1 插入点 A3 对应设定	设置范围: F465~F403	出厂值: 1.80
F468	AI2 插入点 B1 的电压值(V)	设置范围: F406~F470	出厂值: 2.00
F469	AI2 插入点 B1 对应设定	设置范围: F407~F471	出厂值: 1.20

F470	AI2 插入点 B2 的电压值(V)	设置范围: F468~F472	出厂值: 5.00
F471	A12 插入点 B2 对应设定	设置范围: F469~F473	出厂值: 1.50
F472	AI2 插入点 B3 的电压值(V)	设置范围: F470~F408	出厂值: 8.00
F473	AI2 插入点 B3 对应设定	设置范围: F471~F409	出厂值: 1.80

· 当模拟量通道输入方式选择为直线式时,将按照 F400~F429 参数设定; 当选择折线式时,将在直线式的基础上插入 3 个点 A1 (B1) 、A2 (B2) 、A3 (B3),每个点分别可设置输入电压对应的频率。 下图以 A11 通道为例:

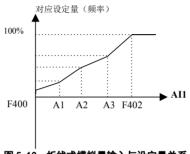


图 5-13 折线式模拟量输入与设定量关系

- ·F400 和 F402 分别对应模拟量输入上下限,设 F460=1, F462=2.00V、F463=1.4、F111=50、F203=1、F207=0,则 A1 点对应的频率为(F463-1)*F111=20Hz,即 2.00V对应 20Hz;其它点可类似设置。
- · AI2 通道设置同 AI1, 通过折线设置所需要的模拟量输入对应关系。

5.5 多段速度控制

多段速控制功能相当于变频器内置一个简易可编程控制器(PLC),用以完成多段速逻辑自动控制。可以设置运行时间、运行方向和运行频率,以满足不同的工艺要求。

本系列变频器可以实现 15 段速变化及最多 8 段速自动循环运行。段速控制在转速追踪时无效,追踪完成后按照设定参数加减速至有效目标频率。

F500 段速类型	设置范围: 0:3段速; 1:15段速 2:最多8段速度自动循环	出厂值: 1
F580 段速模式选择	设置范围: 0:模式1(0000 无效,0001 为第一段速,以此类推) 1:模式2(0000 为第一段速,0001 为第二段速,依次类推,1111 无效)	出厂值: 0

[·] 当 F203=4 时,选择多段速控制,此时须通过 F500 选择段速的类型: F500=0 选择 3 段速,F500=1 选择 15 段速,F500=2 选择最多 8 段速度自动循环;

· F500=2,选择最多8段速度自动循环,其又分为2段速自动循环运行、3段速自动循环运行、……、8段速自动循环运行,具体使用几段速由功能码F501确定。

表 5-6 段速运行方式选择

F203	F500	运行方式	说 明
4	0	3 段速调速	优先级依次为第1、第2、第3段速度。可与模拟量调速进行组合调速。若F207=4, "3段速"调速的优先级高于模拟量调速。
4	1	15 段速调速	可与模拟量调速进行组合调速。若 F207=4 "15 段速"调速的优先级高于模拟量调速。
4	2	最多8段速度 自动循环	不允许手动调节运行频率; 可由参数设置成 "2 段速自动循环运行"、"3 段速自动循环运行"、… "8 段速自动循环运行"。

F501 自动循环段数选择 设置	范围: 2~8	出厂值:7
------------------	---------	-------

F502	自动循环次数选择	设置范围: 0~9999 (为 0 时无限循环)	出厂值: 0
F503	循环运行次数结束后的状 态	设置范围: 0: 停机 1: 保持最后一段速度运行	出厂值: 0

- ·若设置变频器的运行方式为自动循环(F203=4、F500=2),则需通过 F501~F503 来设置与自动循环相关的参数:
- ·F501 选择自动循环的段数,设置范围为 2~8,出厂值为 7 段速度循环;
- ·F502 设定自动循环次数。按照设定好的段速自动循环运行一周称为一次;

若 F502=0, 变频器会无限制地循环运行下去,此时如果给出"停机"信号,可以终止自动循环;若 F502>0,变频器有条件地自动循环运行,当连续运行了设定的次数后,变频器有条件地结束自动循环运行;在连续运行但未到设定次数时,接收到"停机指令",则变频器停止运行,然后如变频器再次接收到"运行"指令,变频器则重新按 F502 设定次数运行。

·F503 设定循环运行次数到达后的状态,F503=0 则结束自动循环运行后变频器停机;如果F503=1,则结束自动循环运行后变频器保持最后一段速度运行。

举例说明:

F501=3, 即选择按"3 段速度"自动循环运行;

F502=100. 即选择自动循环运行次数为 100:

F503=1, 即选择自动循环运行结束后, 保持最后一段速度运行。

则有:

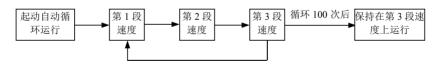


图 5-14 自动循环运行示意图

·自动循环运行过程中,按"停机"键或通过端子给出"停机"信号可终止运行。

F504	第1段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 5.00
F505	第2段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 10.00
F506	第3段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 15.00
F507	第 4 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 20.00
F508	第5段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 25.00
F509	第 6 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 30.00
F510	第7段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 35.00
F511	第8段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 40.00
F512	第9段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 5.00
F513	第 10 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 10.00
F514	第 11 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 15.00
F515	第 12 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 20.00
F516	第 13 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 25.00
F517	第 14 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 30.00
F518	第 15 段速度频率设定(Hz)	设置范围: F112~F111	出厂值: 35.00
F519	第1段速度加速时间设定(S)	设置范围: 0.1~3000	
F520	第2段速度加速时间设定(S)	设置范围: 0.1~3000	
F521	第3段速度加速时间设定(S)	设置范围: 0.1~3000	
F522	第 4 段速度加速时间设定(S)	设置范围: 0.1~3000	
F523	第5段速度加速时间设定(S)	设置范围: 0.1~3000	
F524	第 6 段速度加速时间设定(S)	设置范围: 0.1~3000	
F525	第7段速度加速时间设定(S)	设置范围: 0.1~3000	出厂值: 根据机型
F526	第8段速度加速时间设定(S)	设置范围: 0.1~3000	1 1121后机垒
F527	第9段速度加速时间设定(S)	设置范围: 0.1~3000	
F528	第 10 段速度加速时间设定(S)	设置范围: 0.1~3000	
F529	第 11 段速度加速时间设定(S)	设置范围: 0.1~3000	
F530	第 12 段速度加速时间设定(S)	设置范围: 0.1~3000	
F531	第 13 段速度加速时间设定(S)	设置范围: 0.1~3000	

F532	第 14 段速度加速时间设定(S)	设置范围: 0.1~3000	
F533	第 15 段速度加速时间设定(S)	设置范围: 0.1~3000	
F534	第 1 段速度减速时间设定(S)	设置范围: 0.1~3000	
F535	第2段速度减速时间设定(S)	设置范围: 0.1~3000	
F536	第3段速度减速时间设定(S)	设置范围: 0.1~3000	
F537	第 4 段速度减速时间设定(S)	设置范围: 0.1~3000	
F538	第 5 段速度减速时间设定(S)	设置范围: 0.1~3000	
F539	第 6 段速度减速时间设定(S)	设置范围: 0.1~3000	
F540	第7段速度减速时间设定(S)	设置范围: 0.1~3000	
F541	第8段速度减速时间设定(S)	设置范围: 0.1~3000	
F542	第9段速度减速时间设定(S)	设置范围: 0.1~3000	
F543	第 10 段速度减速时间设定(S)	设置范围: 0.1~3000	
F544	第 11 段速度减速时间设定(S)	设置范围: 0.1~3000	
F545	第 12 段速度减速时间设定(S)	设置范围: 0.1~3000	
F546	第 13 段速度减速时间设定(S)	设置范围: 0.1~3000	
F547	第 14 段速度减速时间设定(S)	设置范围: 0.1~3000	
F548	第 15 段速度减速时间设定(S)	设置范围: 0.1~3000	
F549	第1段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F550	第2段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F551	第3段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F552	第4段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F553	第 5 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F554	第6段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F555	第7段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F556	第8段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F573	第9段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F574	第 10 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F575	第 11 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0

F576	第 12 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F577	第 13 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F578	第 14 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值:0
F579	第 15 段速度运行方向	设置范围: 0: 正转; 1: 反转	出厂值: 0
F557	第1段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F558	第2段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F559	第3段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F560	第 4 段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F561	第 5 段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F562	第 6 段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F563	第7段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F564	第8段速度运行时间(S)	设置范围: 0.1~3000	出厂值: 1.0
F565	第 1 段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F566	第2段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F567	第3段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F568	第 4 段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F569	第 5 段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F570	第 6 段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F571	第7段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0
F572	第8段速结束后停机时间(S)	设置范围: 0.0~3000	出厂值: 0.0

5.6 辅助功能

	- 11023-7310			
F600	直流制动功能选择	设置范围: 0: 禁止; 1: 起动前制动; 2: 停机过程制动; 3: 起动前和停机过程均制动;	出厂值:0	
F601	直流制动起始频率(Hz)	设置范围: 0.20~50.00	出厂值: 1.00	
F602	起动前直流制动效率(%)	设置范围: 30kW 及以下: 0~250 37kW 及以上: 0~200	出厂值: 50	
F603	停机直流制动效率(%)	设置范围: 30kW 及以下: 0~250 37kW 及以上: 0~200	出厂值: 100	
F604	起动前制动持续时间(S)	九里花田 0-20 00	出厂值: 0.50	
F605	停机制动持续时间(S)	│ 设置范围: 0~30.00 │	山/ 追: 0.50	

- ·F600=0,禁止直流制动,无论在起动前 还是停机过程直流制动功能均无效;
- · F600=1,起动前直流制动,在满足起动条件后起动直流制动,结束后从起动频率开始起动;在某些应用场合,如风机等负载。在变频器起动前,负载电机如处于低速运转或逆向旋转状态,这时如果立即起动变频器,变频器可能会过电流。为避免这种故障发生,可以采用"起动前制动"以使负载电机能够保证起动前处于静止状态,这样可以减轻起动时的冲击;在起动前直流制动过程中如果给出停机信号,则变频器按照减速时间停机。

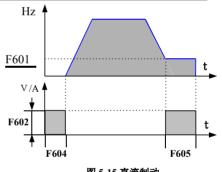


图 5-15 直流制动

- ·F600=2, 停机过程直流制动, 在输出频率降低到直流制动起始频率(F601)以下时, 直流制动快速停止旋转中的电机; 如果在停机直流过程当中给出起动信号, 则结束直流制动, 变频器起动运行; 如果在停机直流制动过程当中给出停机信号, 变频器不响应, 继续执行停机直流制动。
- ·转速追踪过程中,起动前直流制动功能无效;
- ·与"直流制动"相关的参数有: F601, F602, F603、F604、F605。其含义如下:

- a. F601:直流制动起始频率,变频器输出频率低于该值时开始直流制动。F602/F603:直流制动效率取值越大,制动越快。但过大时电机发热严重。
- b. F604: 起动前制动持续时间, 变频器起动前直流制动的持续时间。
- C. F605: 停机制动持续时间, 变频器停机过程直流制动持续的时间。
- ·在直流制动期间,由于电机没有旋转作用引起的自冷效应,处于易过热状态,为此直流制动电压及直流制动时间不宜设置过大和过长,或者建议增加热保护措施。
- ·直流制动过程如图 5-12 所示。

	2000 02 200			
F607 5	失速调节功能选择	设置范围: 0~2: 保留 3: 电压电流控制 4: 电压控制 5: 电流控制	出厂值:3	
F608 5	失速电流调节(%)	设置范围: 60~200	出厂值: 160	
F609 5	失速电压调节(%)	设置范围: 110~200	出厂值: 单相: 130 三相: 140	

过流失速: 当变频器输出电流超过过流失速保护电流(F608*变频器额定电流)时,若变频器处于加速运行状态则停止加速,若变频器处于恒速运行状态则降低运行频率,若变频器处于减速运行状态则减缓频率下降速度,直至输出电流小于过流失速保护电流时,运行频率恢复正常。

- ·F607 用于选择失速防止调节控制方式,分为如表中的三种控制方式。
- · 电压控制: 当电机快速停机时或负载突变时,会使直流母线电压升高,电压控制功能可以调整减速时间、输出频率控制母线电压稳定防止过压故障。(接制动电阻,使用能耗制动功能时,请关闭电压控制功能,否则会影响实际减速时间)
- ·电流控制: 当电机快速加速或负载突变时,由于电流过大有可能报过流故障,电流控制功能能够通过调整加减速时间或降低输出频率控制输出电流在设定值范围内(此功能仅在 VF 控制下有效)。

注意事项:

- 电压电流控制不适用提升类负载。在这种情况下请关闭此功能。
- 开启此功能时会使设定加减速时间与实际的加减速时间产生一定的误差,在加减速时间要求比较 严格的场合请关闭电压电流控制功能
- ·F608 用于设定过失速电流调节的起始点,当前电流超过额定电流乘以 F608 的值时,开始执行过流失速调节。
- ·F609 用于设定过压失速调节的起始点。

F612 制动占空比(%) 设置范围: 0∼100	出厂值: 80

- ·F611 设置能耗制动点起始电压,单位是 V。当直流母线电压超过该功能码所设定的起始值时,能 耗制动起动,投入制动单元泄放,直至直流母线电压降低至设定值时,关闭制动单元。
- ·F612 设置内置制动单元的开关占空比,其值越大,制动效果越好,但会引起制动电阻发热。

设置范围: 0: 无效 1: 有效 2: 首次有效 出厂值: 0

- ·F613=0 转速追踪功能不起作用:
- · F613=1 有效

变频器先对电机的转速和方向进行判断,再以与追踪到的电机转速相应的频率起动,对旋转中电机实施平滑无冲击起动。适用于非点动控制下,瞬时停电再起动、故障复位再起动、运行指令有效但方向信号丢失停机后再起动及运行指令无效停机后再起动;

·F613=2 首次有效

在变频器上电或故障复位后, 变频器只自动转速追踪一次。

·F106=6 转速追踪始终无效。

	设置范围:	
	0: 从停机频率开始追踪;	
	1: 从最大频率开始追踪;	山厂体 4
F614 转速追踪方式 	2: 从停机记忆频率跟踪且转向侦测有	出厂值: 1
	效;	
	3: 从上限频率跟踪且转向侦测有效;	

- ·F614=0 变频器从停机记忆频率开始向下进行速度侦测:
- ·F614=1 变频器从最大频率开始向下进行速度侦测。
- ·F614=2 变频器从停机记忆频率开始根据电机方向进行速度侦测:
- ·F614=3 变频器从上限频率开始根据电机方向进行速度侦测:

F615 转速追踪快慢 设置范围: 1~100 出厂值:	20
------------------------------	----

· 在转速追踪起动方式时,选择转速追踪的快慢。参数越大,追踪速度越快。但过大可能引起追踪不可靠。

	o ++ ++ + + + + + + + + + + + + + + + +	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
F61	8 转速追踪延时时间(S)	设直氾违: 0.5~60.0	出厂值: 1.5

· 在转速追踪功能有效时, 变频器开始追踪延时时间。

F622 能耗制动方式	设置范围: 0: 固定占空比 1: 自动占空比	出厂值: 1
-------------	----------------------------	--------

- ·F622=0, 固定占空比是指母线电压达到能耗制动点(F611)时,制动模块以设定好的占空比(F612)进行能耗制动;
- ·F622=1 自动占空比是指母线电压达到能耗制动点(F611)时,制动模块按照母线电压的高低自动调节占空比,母线电压越高,占空比越大,制动效果越好,但会引起制动电阻发热。

F631 VDC 调节是否有效	设置范围: 0: 无效 1: 有效	出厂值: 0
F632 VDC 调节器目标电压(V)	2、3: 保留 设置范围: 200~800	出厂值: 根据机型

- · 当选择 F631=1, VDC 调节有效, 当电机运行过程中由于负载突变等原因引起短时再生制动时,变频器直流母线电压会上升,从而可能导致过压保护动作。VDC 调节器的作用是在此情况下,通过调整输出频率或降低制动转矩,以控制直流母线电压的稳定。
- · 当直流母线电压高于 F632 设定值后, VDC 调节器动作, 自动将直流母线电压稳定在 F632 设定值。
- ·F106=6 时, VDC 功能始终无效。

注: 30kW 及以上无 VDC 调节功能。

		设置范围:	
F638	参数拷贝使能	0:拷贝禁止 1:参数下载1(电压等级、功率全部一致)	出厂值: 1
		2: 参数下载 2(不考虑电压等级和功率)	
F639	参数拷贝代码		出厂值:根据机型

·F639 不同变频器代码若不同,不允许相互拷贝。

F640 参数拷贝类型			出厂值: 1
-------------	--	--	--------

拷贝优盘具体使用方法参见拷贝优盘说明书。拷贝过程相关故障见下表。

名称		说明	备注
Er71	拷贝超时	拷贝过程 3s 内未收到有效数据	
Er72	运行拷贝	变频器处于运行状态进行拷贝报错	-15.16.0÷ -7.16.0÷
Er73	拷贝未打开密码	用户密码有效且未打开用户密码是报错	非故障,无故障
Er74	不同型号拷贝	拷贝代码、电压等级、功率不同不允许拷贝	代号
Er75	拷贝禁止	F638=0 时,执行拷贝操作	

@

		设置范围:	
F641	低频振荡抑制增益	30kW 及以下: 0: 无效; 1: 有效	出厂值: 根据机型
		37kW 及以上: 0~100	

- ·F641 低频振荡抑制增益,用于设定低频振荡抑制能力。F641 越大,低频振荡抑制效果越好。
- ·F641=0, 低频振荡抑制功能无效;
- · V/F 低频电流振荡抑制有效条件:
 - (1) F106=2(控制方式为 V/F 控制)且 F137≤2;
 - (2) F613=0: 转速追踪功能无效
- 注: 1、低频振荡抑制功能有效时,一台变频器只能同时驱动一台电机。
 - 2、低频振荡抑制功能有效时,必须正确设定电机参数(F801~F805、F844)。
- 3、振荡抑制功能有效且变频器不接电机时,会出现输出电压不平衡的现象,此种情况属于正 党现象 接上电机后输出电压平衡。

中机水, 及上七小山和山七上一人。		
F671 V/F 分离给定电压通道	设置范围: 0:F672 1:Al1 2:Al2 3:Al3 4:通讯给定 5: 脉冲给定 6:PID 给定	出厂值:0
F672 V/F 分离数字给定电压(%)	设置范围: 0.00~100.00	出厂值: 100.0

- ·F671 V/F 分离电压给定通道,设定 100%对应电机额定电压。
- ·F671=0:数字量给定,其值由F672设置。
- · F671=1: AI1; F671=2: AI2; F671=3: AI3 模拟量给定最大值对应电机额定电压
- ·F671=4: 通讯给定电压。

由上位机给定电压,通讯地址: 2009H,给定范围为整数 0~10000 表示 0~100.00%的额定电压。

·F671=5: 脉冲给定电压。

由外部高速脉冲输入给定电压,脉冲调整详见输入脉冲控制参数,输入最大频率对应电机额定电压。

·F671=6: PID 输出给定电压。

PID 参数调整详见 PID 控制参数区, PID 调整输出 100%对应电机额定电压

F673 V/F 分离给定电压下限(%)	设置范围: 0.00~F674	出厂值: 0.00
F674 V/F 分离给定电压上限(%)	设置范围: F673~100.00	出厂值: 100.00

·根据 F671 的给定电压方式,当调节的电压低于下限电压时,按照下限执行;当调节的电压高于上限电压时,按照上限执行。

F675 V/F 分离电压加速时间(S)	设置范围: 0.0~3000.0	出厂值: 5.0
----------------------	------------------	----------

F676 V/F 分离电压减速时间(S) 设置范围: 0.0~3000.0 出厂值: 5.0
--

·加减速设置的时间是从 0 增加到额定电压时的时间。

F677 V/F 分离停机方式	设置范围: 0:电压/频率按照各自的减速时间减速至0 1:电压先减至0再减频率	出厂值: 0
	│2:频率先减至0再减电压	

- ·F677 = 0 时, 电压和频率按照各自的加减速时间变化, 停机以频率到 0 为准
- ·F677 = 1 时, 停机时, 电压先减为 0, 再减频率。
- ·F677 = 2 时, 停机时, 频率先减为 0, 再减电压。

F678	V/F 分离电压判断	设置范围: 0: 不判断 1: 自动判断	出厂值: 0
F679	V/F 分离判断切换点(V)	设置范围: 200~600	出厂值: 430
F680	V/F 分离切换点带宽(%)	设置范围: 0.0~100.0	出厂值: 0.5

- · 当 F678=0 时, 在 VF 分离时, 不判断输入电压。
- · 当 F678=1 时,在 VF 分离时,自动判断输入电压。若当前输入电压>(F679 +F679*F680)时,则认为当前输入电压为 T3 380V 输入;若当前输入电压<(F679 -F679*F680)时,则认为当前输入电压为 S2 220V 输入。

5.7 故障与保护

F700	端子自由停机方式选择	设置范围: 0: 立即自由停机; 1: 延时自由停机	出厂值: 0
F701	自由停机和可编程端子动 作延时时间(S)	设置范围: 0.0~60.0	出厂值: 0.0

· "端子自由停机方式选择"仅用于端子控制下的"自由停机"方式。

F700=0 选择"立即自由停机"时,延迟时间(F701)不起作用,立即自由停机。

· "延时自由停机"是指变频器得到"自由停机"信号时不是立即停机,而是等待一段时间后才 执行"自由停机"指令,延迟时间由 F701 设定。

		设置范围:	
		0: 风扇运转受温度控制	
F702	风扇控制选择	1: 风扇上电运转	出厂值: 2
		2: 风扇运转受运行控制	
		3: 风扇定期运转	

- E1 结构变频器 F702 取值 0 为保留, 无风扇运转受温度控制功能;
 - · 诵讨该功能码 F702 可以设置变频器冷却风扇是否受控:
 - · 当风机受温度控制时,只有散热器温度达到预设的温度时,风机开始运转;
 - · 当风扇运转受运行控制时,风扇只有在变频器运行状态下运转,停机时受散热器温度控制。
 - ·风扇定期运转,风扇运转受温度控制,若温度较低时,每隔24小时,风扇运行1分钟。
 - · 变频器冷却风扇受控可以在一定程度上延长风扇的使用寿命

F704	变频器过载预报警系数(%)	设置范围: 50~100	出厂值: 80
F705	电机过载预报警系数(%)	设置范围: 50~100	出厂值: 80
F706	变频器过载系数(%)	设置范围: 100~150	出厂值: 120
F707	电机过载系数(%)	设置范围: 20~100	出厂值: 100

当变频器输出电流达到电机过载预报警阈值(F705)或者变频器过载预报警阈值(F704)时,只要 F300 或 F301 或 F302=10 或 11,则相应的端子会有输出,但是变频器不会跳故障保护。

- ·变频器过载系数(F706):发生过载保护时的电流与额定电流的比值,其取值应根据负载实际情况确定:
- · 电机过载系数(F707): 当变频器拖动较小功率的电机工作时,为了保护电机,可以按照下式设置:

实际电机额定电流

F707: 电机过载系数= 变频器额定电流 ×100%。

该值可根据用户需求自己设定,相同条件下 F707 设定值越小,电机过载保护越快速,如图 5-13 所示。举例说明:使用 7. 5kW 的变频器(额定电流为 17A)带 5. 5kW(额定电流为 12A)电机,F707 = $12/17 \times 100\% \approx 70\%$,当电机实际电流为 140%的变频器额定电流时,1 分钟后变频器跳过载保护:

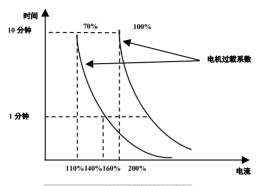


图 5-16 电机过载系数设定

当变频器输出频率小于 10Hz 时,由于普通电机在低速运行时散热效果变差,故在运行频率低于 10Hz 时,电机过载阈值下调,如下图所示(F707=100%时):

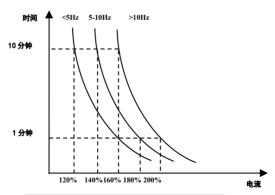


图 5-17 不同频率下的电机过载保护值

F708	最近一次故障类型记录	故障代号代表含义: 2: 0C 过电流保护 3: 0E 过电压保护	
F709	倒数第二次故障类型记录	4: PF1 输入缺相 5: 0L1 变频器过载 6: LU 输入欠压	
F710	倒数第三次故障类型记录	7: OH 变频器过热 8: OL2 电机过载 11: ESP 外部急停 12: Err3 运行前电流故障 13:Err2 参数学习未接电机 15: Err4 电流采样故障 16: 过电流 OC1 保护 17: PFO 输出缺相 18: 保留 23: Err5 PID 参数设置错误 32: PGE PMSM 失调故障 45: CE 通讯超时 49: Err6 看门狗故障	
F711	最近一次故障时故障频率(Hz)		
F712	最近一次故障时故障电流(A)		
F713	最近一次故障时直流母线电压(V)		
F714	倒数第二次故障时故障频率(Hz)		
F715	倒数第二次故障时故障电流(A)		
F716	倒数第二次故障时直流母线电压(V)		
F717	倒数第三次故障时故障频率(Hz)		
F718	倒数第三次故障时故障电流(A)		
F719	倒数第三次故障时直流母线电压(V)		
F720	过流保护故障次数记录		
F721	过压保护故障次数记录		
F722	过热保护故障次数记录		
F723	过载保护故障次数记录		

F724	输入缺相使能	设置范围: 0: 无效 1: 有效	出厂值: 1
F725	欠压保护	设置范围: 1: 手动复位 2: 自动复位	出厂值: 2
F726	过热使能	设置范围: 0: 无效 1: 有效	出厂值: 1
F727	输出缺相使能	设置范围: 0: 无效; 1: 有效	出厂值: 根据机型
F728	输入缺相滤波常数(S)	设置范围: 0.1~60.0	出厂值: 0.5
F730	过热保护滤波常数	设置范围: 0.1~60.0	出厂值: 5.0
F732	欠压保护电压阈值(V)	设置范围: 100~450	出厂值: 根据机型

- · "欠电压"是指交流输入侧电压过低。
- · "输入缺相"是指输入三相电源缺相,注意 7.5kW 及以下功率无输入缺相保护。
- "输出缺相" 是指变频器三相输出或电机线有任一相缺相。
- ·F725 欠压保护,在运行状态下,出现欠压保护时:
- ·F725 = 1, 当母线电压恢复正常时,欠压标志不恢复,需要进行手动复位。
- ·F725 = 2, 当母线电压恢复正常时, 欠压标志自动复位。

F737 0C1 使能	设置范围: 0: 无效 1: 有效	出厂值: 1
F738 0C1 系数	设置范围: 0.50~3.00	出厂值: 2.5
F739 0C1 保护次数记录		

- ·001 系数=过流值/变频器额定电流;
- ·运行状态下。 0C1 系数不可修改, 当发生过流时显示 "0C1"。

		设置范围:	
		0: 无动作;	
F741	模拟量断线保护	1: 故障停机,显示 AErr;	出厂值: 0
F/41	快似里则线体护	2: 停机, 不显示 AErr;	
		3: 保持下限频率运行;	
		4: 保留	
F742	断线保护判断阈值(%)	设置范围: 1~100	出厂值: 50

- ·F400、F406 设置低于 0.10V 时,模拟量断线保护失效;模拟量通道 AI3 无断线保护功能;
- 在设置 F741 为 1、2、3 时, F400、F406 推荐设置在 1V~2V, 以避免干扰引起的误保护; (请您根据具体使用情况进行参数配置)

·断线保护判断电压=模拟通道输入下限*F742%,以 AI1 通道为例,若 F400=1.00、F742=50 则 AI1 在通道申压低于 0.5V 时变频器跳断线保护。

F745 过热预报警阈值(%)	设置范围: 0~100	出厂值: 80
F747 载频自动调整使能	设置范围: 0: 无效 1: 有效	出厂值: 1

- · 在散热器温度达到一定温度时,且有多功能输出端子定义为 16 (参考 F300~F302),则该端子有输出,指示变频器过热中。
- ·在 F747=1,散热器温度达到一定温度,变频器载波频率会自动调整,使变频器的发热降低,保证 变频器能够正常安全的运行,避免散热片温度过高而跳过热保护。
- ·F159=1 选择随机载波时、载波自动调整功能无效。

	设置范围:	
F753 过载保护选择	0: 普通电机	出厂值: 1
	1: 变频电机	

- · F753 根据电机选择过载保护方式
- ·F753=0 普通电机。由于普通电机在低速情况下的散热效果变差,相应的电子热保护值也应作适当调整,这里所说的带低速补偿特性,就是把运行频率低于 30Hz 的电机过载保护阀值下调。
- ·F753=1 变频电机。由于变频专用电机的散热不受转速影响,不需要进行低速运行时的保护值调整

F754	零电流检测阈值(%)	设置范围: 0~200	出厂值: 5
F755	零电流持续时间(S)	设置范围: 0.0~60.0	出厂值: 0.5

· 当变频器输出电流降到零电流检测阈值, 并持续零电流检测持续时间后, 输出端子呈现 0N 状态。

山文 观阳柳田·尼加叶野·尼加亚/阿科里,	71 71 55 号 · C / C / C / C / C / C / C / C / C / C	柳山圳了土地的水心
	设置范围:	
	0: 无效	
F760 接地保护	1: 上电有效	出厂値: 3
	2: 运行有效	
	3:运行和上电均有效	

- ·此功能仅在 T3 系列有效。
- · 变频器输出(U\V\W)对地短路或对地阻抗偏低时,对地有较大漏电流,变频器检测到,提示接地 故障 GP。故障代码 26。
- ·执行接地保护检测时,变频器的 U\V\W 会有一段时间的电压输出。
- ·F760=1 时,上电执行一次接地保护检测。
- ·F760=2 时,每次运行时,执行一次接地保护检测。
- ·F760=3 时,上电时和每次运行时,都执行接地保护检测。

F776 接地启动延时(S)	设置范围: 0.0~3600.0	出厂值: 2.0
----------------	------------------	----------

·F776 接地启动延时,接地保护有效时,停机与起动时间间隔小于 F776 设定值时不执行接地检测。

5.8 申.机.参数

	0		
F800	电机参数选择	设置范围: 0: 不进行参数测量 1: 旋转参数测量 2: 静止参数测量	出厂值: 0
F801	额定功率(kW)	设置范围: 0.1~1000	出厂值:根据机型
F802	额定电压(V)	设置范围: 1~440	
F803	额定电流(A)	设置范围: 0.2~6553.5	
F804	电机极数	设置范围: 2~100	出厂值:4
F805	额定转速(rpm)	设置范围: 1~39000	
F810	电机的额定频率(Hz)	设置范围: 1.00~590.0	出厂值: 50.00
F870	PMSM 反电动势(mV/rpm)	0.1~999.9(线间有效值)	
F871	PMSM D轴电感(mH)	0.01~655.35	
F872	PMSM Q 轴电感(mH)	0.01~655.35	出厂值:根据机型
F873	PMSM 定子电阻(ohm)	0.001~65.535(相电阻)	

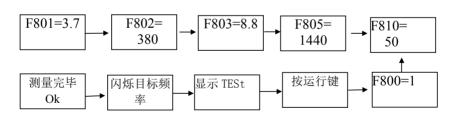
- ·请按照申机铭牌设置 F801~F805 及 F810。
- ·优良的控制性能,需要准确的电机参数。准确的参数识别,来源于电机额定参数的正确设置;
- · 为了保证控制性能,请按变频器标准适配电机进行电机配置,若电机功率与标准适配电机差距过大,变频器的控制性能将明显下降。
- ·F800=0,不进行电机参数测量,此时仍然需要按照电机铭牌正确设置 F801~F803、F805,以及 F810。上电后会根据 F801 里设定的电机功率值,使用默认的电机参数,见 F806~F809 的值,本 值只是鉴于 Y 系列 4 极额定频率为 50Hz 的异步电动机的参考值。针对同步机,请手动输入电机参数至 F870~F873。
- ·F800=1, 旋转参数测量。
 - 为保证变频器的动态控制性能,在确保电机与负载脱开或电机空载的情况下,请选择"旋转参数测量"。进行旋转测试之前,请先正确的设定 F801~F805 及 F810。
- · 旋转参数测量的操作过程:按控制面板运行键,显示"TEST",电机进行两个阶段的静止参数测量,之后电机会按照 F114 设定的加速时间加速并保持一段时间,然后按照 F115 设定时间减速停机,自检结束,异步电机相关参数将存储在 F806~F809 及 F844,同步电机相关参数存储至 F870~F873,F800 自动变为 0。

·F800=2. 静止参数测量。

适用于电机无法与负载脱开或电机无法空载的场合。

按下运行键后,变频器显示"TEST",电机进行两个阶段的静止参数测量,异步电机的定子电阻、转子电阻和漏感自动存入 F806-F808,电机互感使用的是根据电机功率生成的缺省数值。对于同步机,电气参数存储至 F870~F873。其中 F870(PMSM 反电动势)为理论计算值。建议向电机制造厂商索取该电机的精确反电动势值;自检结束,F800自动变为 0。用户也可以手动输入电机互感数值。

提示:1. 无论采取何种电机参数测量方法,都请根据电机铭牌正确设定电机信息(F801~F805、F810),也可根据电机厂家提供的参数手动输入。


- 2、电机极数(F804)是根据电机额定转速自动生成,不可设置,只可以查看。
- 3、电机参数不正确,可能会导致电机运行不平稳甚至无法正常运转,参数的正确测量是对 矢量控制性能的根本保证。
- ·每次更改 F801 电机的额定功率,电机的参数 F806~F809 都会自动刷新到出厂的缺省设置。 电机长时间运行发热之后电机参数可能会有一定变化,如果电机负载可以脱开或者电机可以空载 运行,建议每次运行前都进行自检操作。
- ·F870 (PMSM 感应电动势, unit = 0.1mV/1rpm 时线间反电动势有效值),禁止 F160 恢复出厂值;
- ·F871 (PMSM D 轴电感, unit = 0.01 mH), 禁止 F160 恢复出厂值;
- ·F872(PMSM Q 轴电感, unit = 0.01 mH), 禁止 F160恢复出厂值;
- ·F873(PMSM 定子电阻(相电阻), unit = m-ohm, 即 0.001 ohm), 禁止 F160 恢复出厂值;
- ·F870~F873 为同步机电机参数

F806 定子电阻	设置范围: 变频器功率≤30kW 0.001~65.53Ω 变频器功率>30kW 0.1~6553mΩ	出厂值:根据机型
F807 转子电阻	设置范围: 变频器功率≤30kW 0.001~65.53Ω 变频器功率>30kW 0.1~6553mΩ	出厂值:根据机型

F808 漏感抗(mH)	设置范围: 变频器功率≤30kW 0.01~655.3mH 变频器功率>30kW 0.001~65.53mH	出厂值:根据机型
F809 互感抗(mH)	设置范围: 变频器功率≤30kW 0.01~6553.0mH 变频器功率>30kW 0.001~655.3mH	出厂值: 根据机型
F844 电机空载电流(A)	设置范围: 0.1~F803	出厂值:根据机型

- ·电机参数辨识正常结束后, F806~F809 的设定值自动更新;
- ·如果现场情况无法对电机进行参数辨识,可以参考同类电机的已知参数手工输入。
- ·F844 为电机空载电流, 出厂值根据机型设定, 通过旋转参数测量自动获得;
- ·倘若电机运行时实际的空载电流偏大,请将 F844 的值适当调小;
- ·倘若变频器带载运行或者带载启动电流偏大,请将 F844 适当调大;

例如一台电机的铭牌参数为: 3.7KW、380V、8.8A、1440rpm、50Hz,且电机负载可以脱开,选择旋转参数测量。操作流程如下图所示

图 5-18 参数测量流程图

 F812	设置范围: 0.00~30.00	出厂值: 0.30

·F812 预励磁时间。当起动前直流制动有效时,预励磁时间为制动时间(F604),当起动前直流制动无效时,预励磁时间为 F812 预励磁是在电机起动前事先建立起的磁通,以达到电机起动时快速响

应的目的。当有运行指令时,先按本功能码设定的时间进入预励磁状态,磁通建立起来后,再进入 正常的加速运行。本功能码设置为 0,表示无预励磁过程。

F813	转速环 KP1		
F814	转速环 KI1		
F815	转速环 KP2		
F816	转速环 KI2		出厂值:根据机型
F817	PI 切换频率 1(Hz)	设置范围: 0~F818	
F818	PI 切换频率 2(Hz)	设置范围: F817~F111	

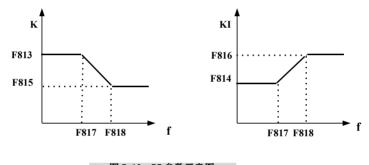


图 5-19 PI 参数示意图

通过调节速度环的比例和积分增益,可以调节矢量控制的动态响应特性。增加 KP 和减小 KI 都可以加快速度环的动态响应,当然过大则会产生振荡。

建议调节的步骤:

在出厂值的基础上进行微调,每次的调节幅度不要过大。

若出现带载能力弱或者转速上升慢的情况,在保证不振荡的情况下先增大 KP 值,稳定之后可适当的减小 KI 值,加快响应速度。

若出现电流或转速振荡,请适当减小 KP 和增大 KI 的值。

在无法判断的情况下。可以先减小 KP. 无效果再增大 KP. KP 调节之后再调节 KI。

注意: 1) 若 KP、KI 设置不当,可能引起系统的振荡甚至无法正常工作,请慎重设置;

2) F813、F814、F815 、F816 、F817 、F818 同步机异步机共用。

F866 静止位置辨识使能	设置范围: 0: 无效 1: 有效 2: 首次运行有效	出厂值:2
F867 位置辨识电流	设置范围: 0~100	出厂值: 80
F868 位置辨识频率	设置范围: 500~16000	出厂值: 16000

- ·F866=0:转子初始位置辨识功能无效。
- ·F866=1:转子初始位置辨识功能有效。
- ·F866=2:转子初始位置辨识功能在上电之后首次运行有效。
- ·F867: 在位置辨识过程中产生的电流。
- ·F868: 在位置辨识过程中发出高频电压的频率。

注: F866~F868 只适用于同步机。

F875 位置辨识角度补偿	设置范围: 0~1000	出厂值: 0
---------------	--------------	--------

·F875: 同步机位置辨识时给定的角度补偿,用以正确获得转子位置。

F876 PMSM 空载注入电流(%)	设置范围: 0.0~100.0	出厂值: 30.0
F878 PMSM 空载注入电流补偿截止点(%)	设置范围: 0.0~50.0	出厂值: 10.0
F880 PMSM PCE 检出时间(S)	设置范围: 0.0~10.0	出厂值: 0.2

- ·F876 设定值的含义为同步电机额定电流的百分比。例如,F876 默认值 30 的含义为 30%的同步电机额定电流。
- · F878 设定值的含义为同步电机额定频率的百分比。例如, F878 默认值 10 的含义为 10%的同步电机额定频率。

注意: F876 和 F878 举例补充说明。

例: 当 F876=30 时,若 F878=10,则空载注入电流在频率低于 10%(F878)时一直为 30(F876); 当频率高于 10%(F878),空载注入电流逐渐减小,当频率等于 20%(F878的两倍)时,减小为 0。

· F880 PMSM PCE 保护检出时间。

5.9 通讯参数

		1	
F900	通讯地址	设置范围: 1~255: 单个变频器地址 0: 广播地址	出厂值: 1
F901	通讯模式	设置范围 1: ASCII 2: RTU	出厂值: 2
F902	停止位位数	设置范围: 1~2	出厂值: 2
F903	奇偶校验选择	设置范围: 0: 无校验 1: 奇校验 2: 偶校验	出厂值: 0
F904	波特率(bps)	设置范围: 0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600	出厂值: 3

·F904 波特率推荐使用 9600,运行会更稳定。

F905 通讯超时(S)	设置范围: 0.0~3000	出厂值:0
--------------	----------------	-------

[·] 当 F905 设置为 0.0 时,表示通信超时故障不开启,当 F905 \neq 0.0 时,在 F905 规定的时间范围内,变频器未接到上位机的有效指令时,显示故障 CE。

[·]通讯参数详见附录 4 通信手册。

5.10 PID 参数

5.10.1 内置 PID 调节及恒压供水功能

内置 PID 调节功能可以用于单泵或双泵自动恒压供水过程,或用于较为简单的闭环系统,操作使用简单。

远程压力表使用举例 1:

当 FA02 选择为 1: AI1 通道时:

- "10V"接压力表的电源端,如果压力表供电电源为 5V,需要外接 5V电源。
- "AI1"接压力表的信号端
- "GND"接压力表的接地端 当 FA02 选择为 2: A12 通道时:
- "10V"接压力表的电源端,如果压力表供电电源为 5V,需要外接 5V 电源。
- "AI2"接压力表的信号端
- "GND"接压力表的接地端

24V 电流型远程压力传感器使用举例 2:

压力传感器输出信号 4~20mA 接变频器 "A12",变频器 CM、GND 端子短接,远程压力传感器的电源端接变频器 24V。

5.10.2 参数介绍

	设置范围:		
[A00 /#-k 丁/左##	0: 单机拖动 (通用 PID 控制模式)	山一体	0
FA00 供水工作模式	1: 固定模式	出厂值:	U
	2: 定时轮换模式		

- ·FA00=0,只有一台电机水泵时选择单机拖动,也可应用于其他闭环控制系统,如:压力、流量等。
- ·FA00=1, 一台电机固定接变频泵, 一台电机固定接工频泵时选择此模式。
- ·FA00=2,两台水泵定时轮换,水泵根据设定的时间(FA25)定时轮换为变频泵。

		设置范围:	
		0: FA04	
FA01 PID 调节给定源	1: AI1	 出厂值: 0	
	2: AI2	Щ, Щ.	
	3: AI3		
	4: FI(脉冲频率输入)		

- ·FA01=0, PID 调节给定源通过 FA04 数字给定,同时 Modbus 上位机通讯给定也有效。
- ·FA01=1. PID 调节给定源通过模拟量 AI1 给定。
- ·FA01=2. PID 调节给定源通过模拟量 AI2 给定。
- ·FA01=3, PID 调节给定源通过电位器 AI3 给定。

·FA01=4. PID 调节给定源通过 FI 脉冲频率输入(DI1 端子)给定。

·FAUI-4,FID 侗卫结足/原理过FI 脉冲	州州八(DII 圳)/ 泊足。	
	设置范围:	
	1: AI1;	
	2: AI2	
	3: FI(脉冲频率输入)	
FA02 PID 调节反馈源	4: 通讯给定	出厂值:1
	8: AI1-AI2	
	9: Al1+Al2	
	10: Max(AI1, AI2)	
	11: Min(AI1, AI2)	

- ·FA02=1, PID 调节反馈源通过模拟量 AI1 反馈。
- ·FA02=2. PID 调节反馈源诵讨模拟量 AI2 反馈。
- ·FA02=3, PID 调节反馈源通过 FI 脉冲频率输入(DI1 端子) 反馈。
- ·FA02=4, 通讯给定 PID 反馈。由上位机给定 PID 反馈, 通讯地址 2030H, 给定范围为整数 0~1000, 表示 0~100.0%。
- ·FA02=8, PID 调节反馈源为模拟量 AI1-AI2 的差;
- ·FA02=9, PID 调节反馈源为模拟量 AI1+AI2 的和;
- ·FA02=10, PID 调节反馈源为模拟量 AI1 和模拟量 AI2 的最大值;
- ·FA02=11, PID 调节反馈源为模拟量 AI1 和模拟量 AI2 的最小值;

FAO3 PID调节上限(%)	设置范围: FA04~100.0	出厂值: 100.0
FA04 PID 调节数字给定值(%)	设置范围: FA05~FA03	出厂值: 50.0
FA05 PID 调节下限(%)	设置范围: 0.0~FA04	出厂值: 0.0

- ·FA03 为 PID 调节上限,以供水为例:运行状态下,负反馈时,反馈量超过此值立刻进行压力保护,变频器自由停机,并显示"nP";正反馈时,反馈量超过"PID 给定值+PID 死区"说明反馈压力过低,此时变频器自动升速或加泵排水。
- ·FA04. 当 FA01=0 时, FA04 的值为 PID 调节数字给定值。
- ·FA05 为 PID 调节下限,以供水为例:运行状态下,负反馈时,反馈量低于"PID 给定值-PID 死区"说明反馈压力过低,变频器自动升速或加泵排水;正反馈时,反馈量低于此值立刻进行压力保护,变频器自由停机,并显示"nP"。

例如:假设压力表量程为 0~1.6MPa, FA04 对应压力为 1.6*70%=1.12 Mpa, FA03 对应压力为 1.6*90%=1.44 Mpa, FA05 对应压力为 1.6*5%=0.08 MPa。

FA06 PID 极性 设置范围: 0: 正作用; 1: 反作用 出厂值	1
--	---

- FA06=0 时,反馈量越大,电机转速越高,即所谓正反馈;
- · FA06=1 时, 反馈量越小, 电机转速越高, 即所谓负反馈。

│ FA07 休眠使能 │ 设置范围: 0: 有效; 1: 无效 │ 出厂值: 1

- ·FA07=0时, PID 调节到下限频率 FA09, 延时 FA10 休眠等待时间后停止工作;
- ·FA07=1 时, 休眠无效。

FA09 PID 调节下限频率(Hz) 设置范围: F112~F111	出厂值: 5.00
-------------------------------------	-----------

· PID 调节时可以调节到的最小频率。

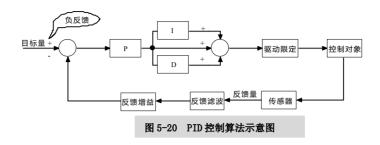
FA10 休眠等待时间(S) 设置范围: 0.0~500.0 出厂值: 15.0	
--	--

·FA07=0 时,PID 调节到下限频率,持续 FA10 时间后,变频器自由停机进入休眠状态,显示 "SLP"

FATT 映胜时间(S)	FA11	唤醒时间(S)	设置范围: 0.0~3000	出厂值: 3.0
----------------	------	---------	----------------	----------

·压力保护(nP或 SLP)后,延时 FA11 所设置的时间后,负反馈时判断 PID 反馈值是否低于 PID 调节下限,正反馈时判断 PID 反馈值是否高于 PID 调节上限,如果是则立刻恢复运行,否则继续等待直到满足恢复运行条件。

FA12 PID 输出上限频率	设置范围: FA09~F111	出厂值: 50.00
FA18 PID 调节给定修改使能	设置范围: 0: 无效; 1: 有效	出厂值: 1


·FA18=0, FA01 不为 0 时, PID 调节给定即变频器上电后第一次给定量, 在待机及运行过程中修改无效。

FA19	比例增益 P	设置范围: 0.00~10.00	出厂值: 0.30
FA20	积分时间 I(S)	设置范围: 0.1~100.0	出厂值: 0.3
FA21	微分时间 D(S)	设置范围: 0.0~10.0	出厂值: 0.0
FA22	PID 采样周期(S)	设置范围: 0.1~10.0	出厂值: 0.1

- ·通过设定 PID 调节器的比例增益、积分时间和微分时间,可以提高动态响应特性。增加比例增益,减小积分时间,增大微分时间均可加快 PID 闭环控制动态响应。比例增益过大、积分时间过小或微分时间太大均可能使系统产生振荡。
- ·建议调节方法:

如果出厂参数不能满足要求,则在出厂值参数基础上进行微调:先增大比例增益,保证系统不振荡;然后减小积分时间,使系统既有较快的响应特性,若还不能达到要求,最后再增大微分时间,使系统超调。建议此值不易设置太大,极易引起系统振荡。

- ・FA22 为 PID 调节器的采样周期,是 PID 调节器对反馈量的采样时间,采样时间越短,调节速度越快。
- · PID 调节算法如下图所示: (反馈滤波、反馈增益是相应模拟量输入 AI1/AI2 的滤波和增益)

		设置范围:	
FA23	PID 负频率输出选择	0: 无效;	出厂值: 0
FAZS	PID 贝则举制山边拜	1: 有效;	山/ 旭: 0
	2: 仅输出负频率		

- ·FA23=0 时, PID 的输出频率为 FA09~FA12。
- ·FA23=1 时, PID 的输出频率为-FA12~FA12, 负号代表反向。
- ·FA23=2 时, PID 的输出频率为-FA12~0, 负号代表反向。

FA24 定时轮换时间单位	设置范围: 0: 小时; 1: 分钟	出厂值:0
FA25 定时轮换时间	设置范围: 1~9999	出厂值: 100

·定时轮换的时间,单位默认为小时,可通过 FA24 设置单位。

FA26 欠载保护方式	设置范围: 0: 无保护 1: 触点式欠载保护 2: PID 式欠载保护 3: 电流式欠载保护	出厂值: 0
FA27 欠载保护电流阈值(%)	设置范围: 10~150	出厂值: 80
FA66 欠载保护持续时间(S)	设置范围: 0.0~60.0	出厂值: 30kW 及以下: 20.0 37kW 及以上: 1.0

·注意: 欠载保护电流百分比指的是电机额定电流的百分比。

- ・欠载保护一般不是保护设备,而是从工厂节能角度考虑的。当某些设备,特别是机泵类设备的输出功率低于一定值后,其效率会变得很差,这时可以考虑关闭这些设备。
- ·如果在运行过程中负载突然减轻为空载,则意味着机械部分发生故障,如皮带断裂或水泵干涸等, 这时必须进行欠载保护。
- ·造成电机欠载的主要原因是抽空。如:罐抽空、槽车抽空等,还有就是泵的吸入管线堵塞,导致 供液不足或断液。
- ·现场判断主要有出口压力为零或变小、电机电流变小、泵的温度升高等等。解决办法:在控制电路上加装欠电流保护器,当电机电流小于设定的数值时延时断电,起到保护电机和泵的作用。
- ·当 FA26=1 时,有水信号和缺水信号分别通过两个输入端子给定,缺水信号端子有效时,变频器立刻进入缺水保护状态,并显示"EP",当有水信号端子有效并持续 FA28 时间后,变频器自动解除"FP"故障。
- · 当 FA26=2 时, PID 调节频率运行至上限频率,此时如果变频器电流小于 FA27 设置数值与电机额定电流的乘积,则变频器立刻进入 PID 欠载保护状态,并显示 "EP2"。
- ·当 FA26=3 时, PID 模式下,如果变频器电流小于 FA27 设置数值与电机额定电流的乘积,并持续欠载保护时间 FA66 后,变频器进入电流式欠载保护,并显示"EP3"。
- · 当 FA26=3 时, 非 PID 模式下, 如果变频器运行在上限频率, 电流小于 FA27 设置数值与电机额 定电流的乘积, 并持续欠载保护时间 FA66 后, 变频器进入电流式欠载保护, 并显示 "EP3"。

·欠载保护后延时 FA28 所设定的时间后,再判断保护信号(EP/EP2)是否消失,如果消失则立刻恢复运行,否则继续等待直到满足恢复运行条件为止。在此期间按"停机"键可对保护状态复位,变频器停机。

FA29	PID 死区(%)	设置范围: 0.0~10.0	出厂值: 2.0
FA30	变频泵再次起动延迟时间(S)	设置范围: 2.0~999.9	出厂值: 20.0
FA31	投工频泵延时时间(S)	设置范围: 0.1~999.9	出厂值: 30.0
FA32	切工频泵延时时间(S)	设置范围: 0.1~999.9	出厂值: 30.0

- ·FA29 PID 死区有两个作用:一个是为抑制 PID 调节器的振荡,此值越大振荡越不容易出现,但是 PID 调节精度会降低。例如:FA29=2.0,FA04=70,则反馈值在 68~72 这一范围内不进行 PID 调节; 同时作为投切工频泵时的 PID 调节死区。负反馈时,反馈值小于设定值-PID 死区(FA29)
- 后延时 FA31 时间,开始投工频泵,反馈值大于设定值+PID 死区(FA29)后,延时 FA32 时间,切去工频泵。
- ·PID 调节投工频泵时,变频泵自由停机,投入工频泵,延时 FA30 设置时间后,变频器拖动变频泵 重新起动,进行 PID 调节;或轮换时间到后,电机自由停机,延时 FA30 设置时间后,变频器拖动变 频泵重新起动,进行 PID 调节。
- · 在双泵控制负反馈时, PID 调节到上限频率, 延时 FA31 设置时间后, 此时压力仍小于投泵压力, 则变频器立刻停止输出, 电机自由停机, 同时投入工频泵。在双泵控制正反馈时, PID 调节到上限

频率,延时 FA31 设置时间后,此时压力仍大于投泵压力,则变频器立刻停止输出,电机自由停机,同时投入工频泵。

·在双泵控制负反馈时,工频泵投入以后,若当前压力大于设定压力,则变频器降到下限频率,延时 FA32(切工频泵延时时间)后,切掉工频泵,变频泵进行 PID 调节。在双泵控制正反馈时,工频泵投入以后,若当前压力小于设定压力,则变频器降到下限频率,延时 FA32(切工频泵延时时间)后,切掉工频泵,变频泵进行 PID 调节。

FA33 恒压供水停机方式	设置范围: 0: 自由停机	出厂值:0
	1: 减速停机	山/ 旭: 0

·FA33 恒压供水停机方式。切去变频泵或发生 nP、SLP、EP 等故障时停机方式。

FA36 1号继电器是否投入使用	设置范围: 0: 不使用; 1: 使用	出厂值:0
FA37 2号继电器是否投入使用	设置范围: 0: 不使用; 1: 使用	出厂值:0

· 1号继电器对应控制板上的 D01, 2号继电器对应控制板 TA/TC。

FA47 1号继电器投入次序	设置范围: 1~20	出厂值: 20
FA48 2号继电器投入次序	设置范围: 1~20	出厂值: 20

·FA47、FA48 分别对应 FA36、FA37 定义的"继电器"在双泵供水时投入使用的次序(即电机投入次序),出厂时 1、2 号继电器(FA47、FA48)是无效的。所设次序 1、2 不能有重复,且 FA47、FA48 必须有一个设置为 1、否则在设置时显示"Err5"。

·FA47、FA48 设置值为 3~20 无效。

FA58 消防压力给定值(%)	设置范围: 0.0~100.0	出厂值: 80.0
-----------------	-----------------	-----------

·消防压力给定值,又名第二压力,在消防控制端子有效时或 PID 控制模式下消防压力切换端子有效时,压力目标值切换到此压力值,进行 PID 的调节。

X-11, 1271			
		设置范围:	
FA59	紧急消防模式设定	0: 无效	出厂值: 0
FADY 系忌用彻快式仅是	1: 紧急消防模式 1	ш/ Щ: 0	
	2: 紧急消防模式 2		

- · 当紧急消防模式打开,且紧急消防端子(电平信号)有效时,变频器将禁止操作和禁止保护(00、0E保护时,变频器立即自动复位并运行输出),以FA60设定的频率或者当前目标频率运行输出。
- ·紧急消防模式 1: 当紧急消防端子有效时,变频器以当前目标频率运行。
- ·紧急消防模式 2: 当紧急消防端子有效时,变频器以 FA60 设定的频率运行。

FA60 紧急消防运行频率(Hz)	设置范围: F112~F111	出厂值: 50
· 当选择紧急消防模式 2 时,一旦紧急消防端子有效,变频器将按照 FA60 设定的频率运行。		
FA62 火警信号消除处理	设置范围: 0~1	出厂值: 0

·FA62=0: 一直处于消防模式: FA62=1: 退出消防模式。

5.11 转矩控制参数区

111-1-112 //-		
FC00 转速/转矩控制选择	设置范围: 0: 速度控制 1: 转矩控制 2: 端子切换	出厂值: 0

- 0:速度控制,变频器按照设定的频率指令输出,输出转矩自动匹配负载转矩,但是输出转矩受上限(厂家默认)限制;
- 1: 转矩控制,变频器按照转矩指令输出转矩,输出转速自动与负载匹配,但是输出转速受上限 (FC23、FC25)限制,请根据现场情况合理设置转矩给定及速度限定。
- 2: 端子切换,可将多功能输入端子(DIX)设为"转矩/转速切换端子"来实现转速控制与转矩控制之间切换,端子有效时为转矩控制,端子无效时为速度控制;

FC02 转矩加/减速时间(S)	设置范围: 0.1~100.0	出厂值: 1.0
------------------	-----------------	----------

注意该时间是指变频器从0%~100%额定转矩的时间。

在思及"门马是旧文频晶次 0% 100%散足权足时"门马。		
FC06 转矩给定通道	设置范围: 0: 数字给定(FC09) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	出厂值: 0
FC07 转矩给定系数	设置范围: 0~3.000	出厂值: 3.000
FC09 转矩给定指令值(%)	设置范围: 0~300.0	出厂值: 100.0

[·]FC07 是指转矩给定的输入量达到上限时,变频器的输出转矩与电机额定转矩的比值,例如选择 AI1 给定 (FC06=1),且 F402 (AI1 上限)=10.00, FC07=3.00,则当 AI1 给定 10V 时,变频器输出转矩为 3 倍的电机额定转矩;

·FC09 是相对于电机额定转矩的百分比。

		设置范围:	
		0: 数字给定(FC17)	
F04.4	心思状症从亡义	1: 模拟量输入 AI1	.I⊏/± ^
FC14 偏置转矩给定通道 	2: 模拟量输入 AI2	出厂值:0	
		3: 模拟量输入 AI3	
		4: 脉冲输入通道 FI	
FC15	偏置转矩系数	设置范围: 0~0.500	出厂值: 0.500
FC16	偏置转矩截止频率(%)	设置范围: 0~100.0	出厂值: 10.0
FC17	偏置转矩指令值(%)	设置范围: 0~50.0	出厂值: 10.00

- ·偏置转矩:在驱动大惯性负载时,为了在起动时输出一个比较大的转矩,确保电机能够可靠起动, 所以在设定转矩的基础上,增加了转矩偏置。当实际转速小于 FC16 的设定转速时,偏置转矩的大 小由 FC14 选择的方式给定;实际转速大于 FC16 的设定转速时,偏置转矩的大小为 0。
- ・偏置转矩系数 FC15 是指当偏置转矩给定通道为非数字给定(FC14≠0),且偏置转矩的给定量达到上限时,偏置转矩与电机额定转矩的比值。例如 FC14=1、F402(AI1 上限)=10.00、FC15=0.500,则当 AI1 给定 10V 时,偏置转矩为电机额定转矩的 50%。

FC22 正转速度限定通道	设置范围: 0: 数字给定(FC23) 1: 模拟量输入 AI1 2: 模拟量输入 AI2	出厂值: 0
	3: 模拟量输入 AI3 4: 脉冲输入通道 FI	
FC23 正转速度限定(%)	设置范围: 0~100.0	出厂值: 10.0
FC24 反转速度限定通道	设置范围: 0: 数字给定(FC25) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	出厂值: 0
FC25 反转速度限定(%)	设置范围: 0~100.0	出厂值: 10.0

·速度限定 FC23/FC25: 是当速度给定量达到最大值时,变频器的输出频率占上限频率(F111)的百分数。

- 日ガ奴。			
		设置范围:	
	0: 数字给定(FC30)		
	1: 模拟量输入 AI1		
FC28	FC28 电动转矩限定通道	2: 模拟量输入 AI2	出厂值:0
	3: 模拟量输入 AI3		
	4: 脉冲输入通道 FI		
FC29	电动转矩限定系数	设置范围: 0~3.000	出厂值: 3.000
FC30	电动转矩限定(%)	设置范围: 0~300.0	出厂值: 200.0

F033	再生转矩限定通道	设置范围: 0: 数字给定(FC35) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	出厂值: 0
FC34	再生转矩限定系数	设置范围: 0~3.000	出厂值: 3.000
FC35	再生转矩限定(%)	设置范围: 0~300.0	出厂值: 200.0

[·] 当电机处于电动状态时,变频器输出转矩限定通道受 FC28 控制,非数字给定时限定转矩大小受 FC29 控制,为数字给定时限定转矩大小受 FC30 控制。

[·] 当电机处于发电状态时,变频器再生转矩限定通道受 FC33 控制,非数字给定时限定转矩大小受 FC34 控制,为数字给定时限定转矩大小受 FC35 控制。

5.12 显示参数区

5. 12 显示参数区		
H000 运行频率/目标频率(Hz)		
• 停机状态下,显示目标频率;运行状态	下,显示运行频率。	
H001 负载速度/目标转速(rpm)		
· 停机状态显示目标转速,运行状态显示	实际转速。	
H002 输出电流(A)		
·运行状态下,显示变频器输出电流,停	机时 H002 为 0。	,
H003 输出电压 (V)		
·运行状态下,显示变频器输出电压,停	讥时 H003 为 0。	
H004 母线电压 (V)		
・显示变频器母线电压。		
H005 PID 反馈(%)		
·显示 PID 反馈值。		
H006 温度(°C)		
・显示变频器温度值。		
H007 计数值		
·显示 DI1 输入脉冲计数值。		
H008 线速度		
・显示变频器线速度。		
H009 PID 设定值(%)		
・显示 PID 设定值。		
H012 输出功率(kW)		
显示变频器输出功率。		
H013 输出转矩(%)		
H014 目标转矩(%)		
・显示变频器的输出转矩和目标转矩。		
H017 多段速当前段数		
· 变频器多段速模式时,显示当前段数。		
H018 输入脉冲频率		
·显示 DI1 输入脉冲频率,单位 0.01KHz。		
H019 反馈速度(Hz)		
H020 反馈速度(rpm)		
L		

· H019 以频率形式显示反馈速度。	
· H020 以转速形式显示反馈速度。	
HO21 AI1 电压(数字量表示)	
H022 AI2 电压(数字量表示)	
H023 AI3 电压(数字量表示)	
・显示模拟量输入电压。	
H025 累计上电时间(分钟)	
H026 累计运行时间(分钟)	
・显示变频器上电时间和运行时间。	
H027 输入脉冲频率(Hz)	
·显示 DI1 输入脉冲频率,单位 1Hz。	
注:若输入脉冲频率超过 65535Hz,请查看 H01	3.
H028 通讯设定值	
・显示通讯给定值。	
H029 累计运行时间(秒)	
・显示变频器运行时间,单位为秒。	
H030 主频率 X 显示(Hz)	
H031 辅频率 Y 显示(Hz)	
・显示变频器主频率和辅频率。	

·显示变频器累计上电时间与运行时间。

H036 累计上电时间(小时) H037 累计运行时间(小时)

附录 1 常见故障处理

变频器发生故障时,不要立即复位运行而要查找原因,彻底排除。变频器和电机出现故障时,可对照本说明书处理,如果仍不能解决请与厂家联系,且不要擅自维修。

附表 1-1 变频器常见故障

故障代码 及类型	说明	发生原因	处理方法
Err0	禁止运行中修改功能码	*变频器运行中修改功能码	*请停机修改功能码
Err1	密码错误	*在密码有效时,密码设置错误 *修改参数时,未打开密码	*请正确输入用户密码
2: 00	过电流保护	*加速时间太短	*延长加速时间
16: 001	过流保护 001	*输出侧短路 *电机堵转 *电机负载过重	*电机电缆是否破损 *检查电机是否超载 *降低 V/F 补偿值
67: 002	过流保护 002	*电机参数辨识不准确	*正确辨识电机参数
3: 0E	直流过电压保护	*电源电压过高 *负载惯性过大 *减速时间过短	*检查是否输入额定电压 *加装制动电阻(选用) *增加减速时间
4: PF1	输入缺相保护	*输入电源缺相	*检查电源输入是否正常 *检查参数设置是否正确
5: OL1	变频器过载保护	*负载过重	*降低负载 *检查机械设备装置 *加大变频器容量
6: LU	欠电压保护	*输入电压偏低	*检查电源电压是否正常 *检查参数设置是否正确

故障代码 及类型	说明	发生原因	处理方法
7: OH	变频器 过热保护	*环境温度过高 *散热片太脏 *安装位置不利通风 *风扇损坏 *载波频率或者补偿曲线偏高	*改善通风 *清洁进出风口及散热片 *按要求安装 *更换风扇 *降低载波频率或者补偿曲 线
8: 0L2	电机过载保护	*负载过重	*降低负载 *检查机械设备装置 *加大变频器容量
11: ESP	外部故障	*外部急停端子有效	*排查外部故障信号
12: Err3	运行前电流故障	*在运行前已经有电流报警信 号	*检查排线连接是否可靠 *请求厂家服务
13: Err2	参数测量错误	*参数测量时未接电机	*请正确接上电机
15: Err4	电流零点偏移故 障	*排线松动 *电流检测器件损坏	*检查并重新插接排线 *请求厂家服务
17: PF0	输出缺相	*电机线掉线 *电机损坏 *变频器故障	*仔细检查电机线 *更换电机 *寻求厂家支持
18: Aerr	断线保护	*模拟量信号线接触不良 *模拟量信号线断 *信号源损害	*重新压接模拟量信号线 *更换模拟量信号线 *更换信号源
19: EP3		*水泵干涸	*给水源充水
20:EP/EP2	欠载保护信号	*皮带断裂 *机械设备故障	*更换皮带 *维修机械设备
22: nP	压力控制保护	*负反馈时压力过大 *正反馈时压力过小	*请降低 PID 调节下限频率
23: Err5	PID 参数设置故障	*PID 参数设置不合理	*请正确设置 PID 参数
24: SLP	休眠故障	*变频器进入休眠状态	*正常状态
26: GP	接地保护(S2/T2 无 GP 保护)	*电机线缆损坏,对地短接 *电机绝缘损坏,对地短接 *变频器故障	*更换电缆 *维修电机 *寻求厂家支持

常见故障处理

32: PCE	PMSM 失调故障	*加速时间太短 *负载过重 *电机堵转	*延长加速时间 *检查电机是否超载
35: OH1	PTC 过热保护	*外部热继电器保护	*检查外部热保护设备
44: Er44	从机掉站故障	*从机与主机通讯故障	*检查配线 *检查波特率设置 *检查主从通讯参数设置
45: CE	通信超时故障	*通讯故障	*上位机未定时发送指令 *检查通信线是否连接可靠
47: EEEP	EEPROM 读写故障	*周围存在干扰 *EEPROM 损坏	*排除干扰 *寻求厂家支持
49: Err6	看门狗故障	*看门狗信号超时	*请检查看门狗信号
53: CE1	面板断线故障	*外引远控盒断线	*查看控制盒外引线是否损 坏

● 单相变频器、三相 7.5kW 及其以下功率无 PF1 保护。

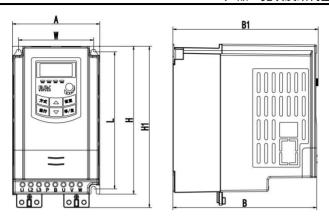
附表 1-2 电机故障及处理

	門衣 1-2 电机	7.以厚及处理
故障	故障原因	处理方法
	*接线错误	*接通电源
	*设定错误	*正确接线
电机不转	*负载过重	*消除故障
	*电机损坏	*减小负载
	*故障保护	*按附表 1-1 检查
	 *U、V、W 接线错误	*纠正接线
电机转向错	*参数设置错误	*正确设置参数
	*频率给定电路的接线错误	*改正接线
电机转动但不能	*运转方式设定错误	*改正设定
变速	*负载过重	*减小负载
	*电机选型错误	*正确选择电机
 电机转速太高或	*传动装置不匹配	*匹配传动比设置
太低	*变频器参数设置不正确	*正确设置变频器参数
	*变频器输出电压不正常	*检查 VVVF 特性值
		*减小负载
电机转动	*负载变动过大	*减小负载变动,增加变频器和电机容量
不稳	*电机缺相	*改正接线
	*电机故障	
		*检查输入侧接线
L NEGRES 2		*正确选择空气开关容量
电源跳闸	*线路电流过大 	*减小负载
		*消除变频器故障

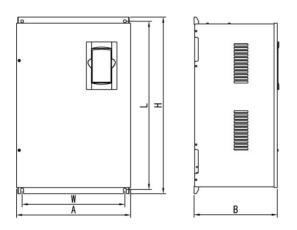
附录 2 产品一览表及结构型式一览表

E800 系列变频器的功率范围为 0.4~500kW。主要信息资料见附表 2-1 及附表 2-2。变频器应工作在额定输出电流以下,允许短时过载工作,但工作时间不得超过允许值。

附表 2-1 E800 系列产品一览表


型号	适配电机(kW)	额定输出电流 (A)	结构 代号	重量 (kg)	冷却方式	备注
E800-0004S2	0. 4	2. 5	E1	1. 2	自冷	相
E800-0007\$2	0. 75	4. 5	E1	1.3	风冷	壁 挂
E800-0015S2	1.5	7. 0	E1	1.3	风冷	在 < 塑
E800-0022S2	2. 2	10. 0	E2	2. 0	风冷	壳
E800-0007T2	0. 75	4. 5	E1	1.3	风冷	三相 220V
E800-0015T2	1.5	7	E1	1. 3	风冷	完壁块
E800-0022T2	2. 2	10	E2	2. 0	风冷	型 塑
E800-0007T3	0. 75	2. 0	E1	1.3	自冷	
E800-0015T3	1.5	4. 0	E1	1. 3	风冷	
E800-0022T3	2. 2	6. 5	E2	2. 0	风冷	
E800-0030T3	3. 0	7. 6	E2	2. 0	风冷	_
E800-0040T3	4. 0	9. 0	E2	2. 1	风冷	三相
E800-0055T3	5. 5	12. 0	E2	3. 2	风冷	相 380V
E800-0075T3	7. 5	17	E4	3. 5	风冷	·
E800-0110T3	11	23	E4	3. 6	风冷	壳
E800-0150T3	15	32	E5	5. 0	风冷	壁
E800-0185T3	18. 5	38	E5	5. 1	风冷	挂
E800-0220T3	22	44	E6	8. 3	风冷	
E800-0300T3	30	60	E6	9. 0	风冷	
E800-0370T3	37	75	E7	15. 3	风冷	
E800-0450T3	45	90	E7	15. 3	风冷	

E800-0550T3	55	110	C4	23	风冷	
E800-0750T3	75	150	C5	36	风冷	
E800-0900T3	90	180	C6	50	风冷	
E800-1100T3	110	220	C6	52	风冷	
E800-1320T3	132	265	C6	81	风冷	三
E800-1600T3	160	320	C7	96	风冷	相
E800-1800T3	180	360	C8	100	风冷	380V 金
E800-2000T3	200	400	C8	110	风冷	
E800-2200T3	220	440	С9	158	风冷	属壳
E800-2500T3	250	480	CA	163	风冷	壁
E800-2800T3	280	530	CA	193	风冷	挂
E800-3150T3	315	585	CA1	200	风冷	
E800-3550T3	355	650	CA1	207	风冷	
E800-4000T3	400	725	СВ	225	风冷	
E800-4500T3	450	820	СВ	227	风冷	
E800-5000T3	500	900	СВ	232	风冷	


附表 2-2 E800 系列产品结构型式一览表

结构 代号	外形尺寸[A×B(B1)×H(H1)] ^{备注1}	安装尺寸(W×L)	安装螺钉	备注
E1	80×135 (142) ×138 (153)	70×128	M4	
E2	106×150 (157) ×180 (195)	94×170	M4	
E3	106×170 (177) ×180 (195)	94×170	M4	塑
E4	142×152 (159) ×235 (248)	126×225	M5	塑 売 壁 挂
E5	161×170 (177) ×265 (280)	146×255	M5	挂
E6	210×196 (202) ×340 (358)	194×330	M5	
E7	265×235 (242) ×435 (465)	235×412	M6	
C4	315×234×480	274×465	M6	
C5	$360\times265\times555$	320×530	M8	
C6	410×300×630	370×600	M10	
C 7	516×326×765	360×740	M10	金属
C8	560×342×910	390×882	M10	金属壳壁挂
С9	400×385×1310	280×1282	M10	堂 挂
CA	535×380×1340	470×1310	M10	
CA1	600×380×1340	545×1310	M10	
CB	600×380×1593	545×1563	M10	

尺寸单位: mm

塑壳外形

壁挂金属机壳外形

备注 1: B1 为本地控制面板上有电位器的总体尺寸。

2: B 为本地控制面板上不带电位器的总体尺寸。

3: H1 为加接地挡片的总体尺寸。

附录 3 制动电阻推荐选型表

变频器型号	适配电机功率(kW)	最小阻值(Ω)	电阻最小功率	推荐阻值/功率	
E800-0004S2	0. 4			450.0 (000)	
E800-0007S2	0. 75	00	000	150Ω/300W	
E800-0015S2	1.5	80	200W	000/500#	
E800-0022S2	2. 2			80Ω/500W	
E800-0002T2	0. 2				
E800-0004T2	0. 4			150Ω/300W	
E800-0007T2	0.75	80	200W		
E800-0015T2	1.5				
E800-0022T2	2. 2			80Ω/500W	
E800-0007T3	0. 75	145	80W	300 Ω/300W	
E800-0015T3	1.5	95	150W	450 O /200W	
E800-0022T3	2. 2	95	250W	150Ω/300W	
E800-0030T3	3. 0	90	300W		
E800-0040T3	4. 0	90	400W		
E800-0055T3	5. 5	90	550W	90Ω/1.5KW	
E800-0075T3	7. 5	90	750W		
E800-0110T3	11	50	1. 1kW	50Ω/1.5KW	
E800-0150T3	15	30	1. 5kW		
E800-0185T3	18. 5	30	2. 0kW		
E800-0220T3	22 30 2. 2kW		30Ω/3KW		
E800-0300T3	30	25 3. 0kW			
E800-0370T3	37	25	4. 0kW		
E800-0450T3	45	15	4. 0kW	15Ω/4KW	

注意: 在负载惯性大的场合制动电阻发热严重,建议在推荐电阻的基础上加大电阻的功率。

附录 4 通讯手册

Modbus 概述

Modbus 是一种串行异步通讯协议。Modbus 协议是应用与 PLC 或其他控制器的一种通用语言。此协议定义了一个控制器能够识别使用的消息结构,而不管它们是经过何种网络传输的。Modbus 协议不需要专门的接口,典型的物理接口是 RS485;关于 Modbus 的详细资料,可查阅相关书籍。

- 二 Modbus 通讯协议
- 2.1. 传输模式:
- 2.1.1 数据包格式

ASCII 模式

开始 标志	地址域	功能域	数据域			LRC 校验		结束标志		
: (0x3A)	变频器 地址	功能代码	数据长度	数 据 1		数 据 N	LRC 高字 节	LRC 低字节	回车 (0x0D)	换行 (0x0A)

RTU 模式

起始标志	地址域	功能域	数据域	CRC	校验	结束标志
T1-T2-T3-T4	变频器 地址	功能代码	N个数据	CRC 低字 节	CRC 高字 节	T1-T2-T3-T4

2.1.2 ASCII 模式数据格式

每发送 1 Byte 的信息需要 2 个 ASCI I 字符。例如:发送 31H(十六进制),以 ASCI I 码表示 '31H',包含字符 '3'、 '1',则发送时需要 '33', '31'两个 ASCI I 字符。

常用字符 ASCII 码对应表如下:

字符	0	1	2	3	4	5	6	7
ASCII码	30H	31H	32H	33H	34H	35H	36H	37H
字符	8	9	Α	В	С	D	E	F
ASCII码	38H	39H	41H	42H	43H	44H	45H	46H

2.1.2 RTU 模式数据格式

发送的字符以 16 进制数表示。例如发送 31H。则直接将 31H 送入数据包即可。

2.2 波特率设定范围

变频器系列	波特率范围
E800	1200, 2400, 4800, 9600, 19200, 38400, 57600

2.3 帧结构

ASCII 模式

位元	功能
1	开始位(低电平)
7	数据位
0/1	奇偶较验位(无校验则该位无,有校验时 1 位)
1/2	停止位 (有校验时1位, 无校验时2位)

RTU 模式

位元	功能		
1	开始位(低电平)		
8	数据位		
0/1	奇偶较验位(无校验则该位无,有校验时1位)		
1/2	停止位(有校验时 1 位,无校验时 2 位)		

2.4 错误检测

2.4.1 ASCII 模式

LRC 校验:校验除开始的冒号及结束的回车换行符以外的内容。

LRC 方法是将消息中的 8bit 的字节连续累加,不考虑进位,它仅仅是把每一个需要传输的数据(除起始位、停止位)按字节叠加后取反加 1 即可。

RTU 模式

CRC-16(循环冗余错误校验);

CRC-16 错误校验程序如下:

报文(此处只涉及数据位,不指起始位、停止位和任选的奇偶校验位)被看作是一个连续的二进制,其最高有效位(MSB)首选发送。报文先与 2¹⁶相乘(左移 16 位),然后除以 2¹⁶+2¹⁵+2²+1。2¹⁶+2¹⁵+2²+1 可以表示为二进制数 1100000000000101。整数商位忽略不记,16 位余数加入该报文 (MSB 先发送),成为 2 个 CRC 校验字节。余数中的 1 全部初始化,以免所有的零成为一条报文被接收。经上述处理而含有 CRC 字节的报文,若无错误,到接收设备后再除以多项式 2¹⁶+2¹⁵+2²+1,会得到一个零余数,接收设备核验这个 CRC 字节,并将其与被传送的 CRC 比较。

习惯于成串发送数据的设备会首选送出字符的最右位(LSB-最低有效位)。而在生成 CRC 情况下,发送首位应是被除数的最高有效位 MSB。由于在运算中不用进位,为便于操作起见,计算 CRC 时设 MSB 在最右位。生成多项式的位序也必须反过来,以保持一致。多项式的 MSB 略去不记,因其只对商有影响而不影响余数。

生成 CRC-16 校验字节的步骤如下

- a: 装入一个 16 位寄存器, 所有数位均为 1:
- b: 该 16 位寄存器的低位字节与开始 8 位字节进行"异或"运算。运算结果放入这个 16 位寄存器。
- c: 把这个 16 寄存器向右移一位
- d: 若向右 (标记位) 移出的数位是 1,则生成多项式 101000000000001 和这个寄存器进行"异或"运算;若向右移出的数位是 0,则返回 c。
- e: 重复c和d, 直至移出8位。
- f: 下一个 8 位字节与该十六位寄存器进行"异或"运算。
- g: 重复 c~f, 直至该报文所有字节均与 16 位寄存器进行"异或"运算,并移位 8 次。
- h: 这个 16 位寄存器的内容高低字节对换即 2 字节 CRC 错误校验,被加到报文的最高有效位。
- 2.4.3 ASCII 模式与 RTU 模式转换
 - 一条 RTU 协议命令可以通过以下步骤转化为 ASCII 协议命令:
 - (1) 把命令的 CRC 校验去掉, 并且计算出 LRC 校验取代。
 - (2) 把生成的命令串的每一个字节转化成对应的两个字节的 ASCII 码, 比如 0x03 转化成 0x30, 0x33 (0 的 ASCII 码和 3 的 ASCII 码)。
 - (3) 在命令的开头加上起始标记":", 它的 ASCII 码为 0x3A。
 - (4) 在命令的尾部加上结束标记 CR, LF(0Xd, 0Xa),此处的 CR, LF表示回车和换行的 ASCII 码。 所以以下我们仅介绍 RTU 协议即可,对应的 ASCII 协议可以使用以上的步骤来生成。
- 2.5 命令类型及格式
- 2.5.1 支持命令类型如下:

命令类型	名称	描述		
03	读取保持寄存器的内容	器的内容 在一个或者多个寄存器中取得当前值,最多不超过 10		
		个		
06	预置单寄存器	把具体的值装入保持寄存器		

2.5.2 通讯地址及命令含义

该部分是通讯的内容, 用于控制变频器的运行, 变频器状态及相关参数设定。

2.5.2.1 功能码参数地址表示规则:

功能码表示地址方法,高字节去掉前面的F,低字节转换为16进制数即可。

例如:

F114(面板显示),高字节F1去掉F为01,低字节14用16进制数表示为0E, 因此功能码F114的地址表示为010E(16进制数):同样的方法F201(面板显示)的地址表示为0201(16进制数)。

注意:

每次最多只能读6个功能码,或者写一个功能码。有些功能只能读取参数,不可更改;有些功能 既不可读取参数,也不可更改参数;有些参数在变频器处于运行状态时,不可更改;有些参数不论 变频器处于何种状态,均不可更改;更改功能码参数,还要注意参数的范围、单位及相关说明。以 免出现不可预料的结果。

2.5.2.2 不同种类参数作为地址的表示规则

本部分所表示的地址及参数描述均为 16 进制, 例如 1000 表示十进制的 4096。

2.5.2.2.1 运行状态参数地址

参数地址	参数描述(只读)				
1000	输出频率(0.01Hz)				
1001	输出电压(V)				
1002	输出电流 (0. 01A)				
1003	极数/频率源选择 高字节为极数,低字节为频率源选择				
1004	母线电压(V)				
1005	传动比/变频器状态 高字节为传动比,低字节为变频器状态 变频器状态: 0X00: 待机				

1006	输出转矩百分比(0.1%)				
1007	变频器散热器温度(℃)				
1008	PID 给定值 (0. 1%)				
1009	PID 反馈值(0. 1%)				
100A	读取整数功率值:上位机读取整数功率值,不足整数部分舍掉				
100B	DI 端子输入状态: DI1~DI8—bit0~bit7				
	端子输出状态:				
4000	bit0-D01				
100C	bit1-D02 (30kW 以下无该端子)				
	bit2-故障继电器				
100D	AI1: 0~4095 读取输入模拟量数值				
100E	AI2: 0~4095 读取输入模拟量数值				
100F	AI3: 0~4095 读取输入模拟量数值				
1010	保留				
1011	0~100.00%,输入脉冲频率百分比				
1012	0~100.00%,输出脉冲频率百分比				
1013	监视当前所处段速 0000 段速 1 0001 段速 2 0010 段速 3 0011 段速 4 0100 段速 5 0101 段速 6 0110 段速 7 0111 段速 8 1000 段速 9 1001 段速 10 1010 段速 11 1100 段速 13 1101 段速 14 1110 段速 15 1111 无				
1014	保留				
1015	监视模拟量输出百分比, A01 (0~100.0%)				
1016	监视模拟量输出百分比, AO2 (0~100.0%)				
1017	监视当前转速值				
1018	读取功率值精确至小数点后一位				
101A	输出电流(0. 01A, 针对电流较大,读 1002 溢出时)				
101B	101A:输出电流高 16 位;101B:输出电流低 16 位				
101D	变频器准备就绪: 0: 无效 1: 有效				
102B	输出电流 (0.1A)				

2.5.2.2.2 控制命令地址

参数地址	参数描述(只写)			
	命令内容含义:			
	0001:正转运行(无参数)			
	0002: 反转运行(无参数)			
	0003: 减速停机			
	0004: 自由停机			
2000 ^{注 1}	0005:正转点动起动			
2000	0006:正转点动停机			
	0007: 保留			
	0008:运行(无方向)			
	0009: 故障复位			
	000A:反转点动起动			
	000B:反转点动停机			
	锁定参数			
	0001:解除系统远程控制的锁定			
2001 ^{注 2}	0002: 锁定远程控制(在解锁之前任何远程控制命令无效)			
	0003:解除写 EEPROM 锁定,此时同时写 RAM 和 EEPROM。			
	0004: 锁定写 EEPROM,此时只写 RAM。			
	上位机控制 A01 输出百分比			
2002	设置: 0~1000			
	表征输出模拟量 0~100.0%			
	上位机控制 A02 输出百分比			
2003	设置: 0~1000			
	表征输出模拟量 0~100.0%			
	上位机控制脉冲输出(F0)百分比			
2004	设置: 0~1000			
	表征输出脉冲量 0~100.0%			
	控制多功能输出端子 D01			
2005	0: 表征输出无效			
	1: 表征输出有效			
	控制多功能输出端子 DO2			
2006	0: 表征输出无效			
	1:表征输出有效			

2007	控制继电器输出端子 0:表征输出无效 1:表征输出有效
2009	V/F 分离上位机给定电压
2030	PID 反馈给定
10D	目标频率 (F113)

注 1: 2000 中的命令类型并不是每种机型都有。

注 2: 出厂时只允许上位机写 RAM, 若要修改 EEPROM, 请解除锁定(2001=0003 或者 F219=0)。 当端子只为上位机提供服务时,请将端子功能设置成零。

2.5.2.3 读写参数时的不正常应答

命令描述	功能码区	数据区
从机参数应答	功能码区的最高位变为 1	命令内容含义 0001:不合法功能代码 0002:不合法数据地址 0003:不合法数据 0004:从机设备故障 ^{注3}

注 3:0004 异常码在以下 2 种情况下出现:

- 1、变频器处于故障状态时对变频器进行非复位操作。
- 2、变频器处于锁定状态是对变频器进行非解锁操作。
- 2.5.3 附加说明

通讯过程中表示:

频率的参数值=实际值 X 100

时间的参数值=实际值 X 10

电流的参数值=实际值 X 100

电压参数值 =实际值 X 1

功率参数值(100A) =实际值 X 1

功率参数值(1018) =实际值 X 10

传动比参数值=实际值 X 100

版本号参数值=实际值 X 100

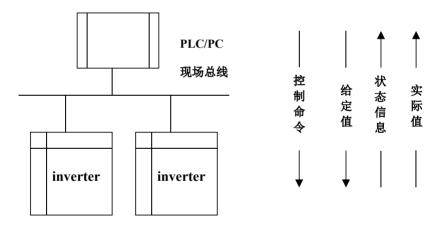
说明:参数值为数据包实际发送的值;实际值为该参数在变频器内的实际值。上位机在收到参数值 后除以相应的比例系数得到变频器相应参数的实际值。 注意: 向变频器发送命令时数据包内的数据不考虑小数点。所有数据的值不能大于 65535, 否则数据溢出。

三、与通讯相关的功能码

变频器通讯用到的参数如下表:

功能码	功能定义	设定范围	出厂值
F200	起动指令来源	0: 控制面板指令 1: 端子指令 2: 控制面板+端子 3: Modbus 4: 控制面板+端子+Modbus	4
F201	停机指令来源	0: 控制面板指令 1: 端子指令 2: 控制面板+端子 3: Modbus 4: 控制面板+端子+Modbus	4
F203	主频率来源 X	0: 数字给定记忆 1: 外部模拟量 AI1 2: 外部模拟量 AI2 3: 保留 4: 段速调节 5: 数字给定不记忆 6: 模拟量 AI3 7: 保留 8: 保留 9: PID 调节 10: Modbus	0
F900	变频器地址	1~255	1
F901	Modbus 模式选择	1: ASCII 模式 2: RTU 模式	2
F903	奇偶校验选择	0: 无校验 1: 奇校验 2: 偶校验	0

F904	波特率选择(bps)	0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600	3
------	------------	--	---


在用 PLC 或者其他智能设备远程控制变频器的时候,要注意上表中与通讯有关功能码设置。确保 通讯两端设备的通讯参数一致。

四、物理接口连接

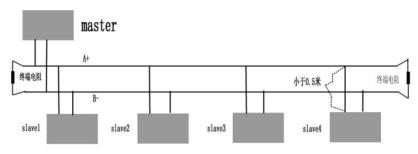
4.1 接口说明

RS485 的通讯接口为 A+、B-端子。

4.2 现场总线结构

现场总线连接图

变频器采用 RS485 的半双工通讯方式。485 总线要采用手拉手结构,而不能采用星形结构或者分叉结构。星形结构或者分叉结构会产生反射信号,从而影响到 485 通讯。


布线一定要选用屏蔽双绞线,尽量远离强电,不要与电源线并行,更不能捆扎在一起。

需要注意的是,半双工连接中同一时间只能有一台变频器与上位机通讯。如果发生两个或者多 个变频器同时上传数据则会发生总线竞争。不仅会导致通讯失败,还可能使某些元件产生大电流。

4.3 接地和终端

RS485 网络的终端要使用 120Ω 的终端电阻,用来消弱信号的反射。中间网络不能使用终端电阻。只在网络的第一台、最后一台的 A+ B-之间加终端电阻。

RS485 网络中的任何一点都不能直接接地。网络中的所有设备都要通过自己的接地端良好接地。需要注意的是,在任何情况下接地线都不能形成封闭回路。

通讯系统连接图

接线时要考虑计算机/PLC的驱动能力及计算机/PLC与变频器之间的距离。如果驱动能力不足需要自行加装中继器。

7 所有的安装接线,必须在变频器断电的情况下进行。

五、常用命令举例

例 1: RTU 模式下, 将 01 号变频器的加速时间 F114 改为 10.0 秒。

主机 请求:

地址	功能码	寄存器高 字节	寄存器低字节	写参数 状态高 字节	写参数 状态低 字节	CRC 低字节	CRC 高字节
01	06	01	0E	00	64	E8	1E

功能码 F114

10.0秒

从机正常应答:

地址	功能码	寄存器高字节	寄存器低字节	写参数 状态高 字节	写参数状 态低字节	CRC 低字节	CRC 高字节
01	06	01	0E	00	64	E8	1E

功能码 F114

正常响应

从机不正常时的应答:

地址	功能码	不正常代码	CRC 低字节	CRC 高字节
01	86	04	43	A3

功能码最高位置1 从机故障

例 2: 读 02 号变频器的输出频率、输出电压、输出电流、极数/频率源选择。

主机请求地址	功能码	第一个寄存器 的高位地址	第一个寄存 器的低位地 址	寄存器 的数量 的高位	寄存器 的数量 的底位	CRC 低字节	CRC 高字节
02	03	10	00	00	04	40	FA

通讯参数地址 1000H

从机 应答:

地址	功能码	字节数	数据高字节	数据低字节	数据高字节	数据低字节	数据高字节	数据低字节	数据高字节	数据低字节	CRC 低字 节	CRC 高 字 节
02	03	08	13	88	01	7C	00	3C	02	00	82	F6

输出频率 输出电压 输出电流 极数 频率源选择(F207)

2 号变频器的输出频率位 50.00Hz, 输出电压 380V, 输出电流 6.0A, 电机极数为 2, 频率源选择为主频 率调速。

例 3: 1号变频器正转运行

主机请求:

地址	功能码	寄存器高字节	寄存器低字节	写参数状 态高字节	写参数状 态低字节	CRC 低字节	CRC 高字节
01	06	20	00	00	01	43	CA

通讯参数地址 2000H

正转运行

从机正常应答:

地址	功能码	寄存器高字节	寄存器低字节	写参数状 态高字节	写参数状 态低字节	CRC 低字节	CRC 高字节
01	06	20	00	00	01	43	CA

正常响应

从机不正常时的应答:

地址	功能码	不正常代码	CRC 低字节	CRC 高字节	
01	86	01	83	AO	

功能码最高位置 1 不合法功能代码(假设)

例 4: 读 2 号变频器的 F113、F114 的值

主机请求:

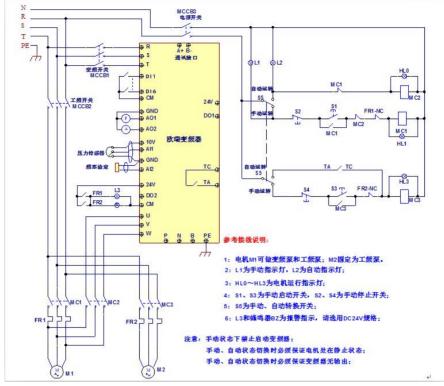
地址	功能码	寄存器高字节	寄存器低字节	寄存器数量的高位	寄存器数量的低位	CRC 低字节	CRC 高字节
02	03	01	OD	00	02	54	07

功能码 F113 读寄存器个数

从机正常应答:

, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>								
地址	功能码	字节数	第一个 参数状 态高字 节	第一个参数状态低字节	第二个 参数状 态高字 节	第二个参数状态低字节	CRC 低字节	CRC 高字 节
02	03	04	03	E8	00	78	49	61

实际为 10.00 实际为 12.0

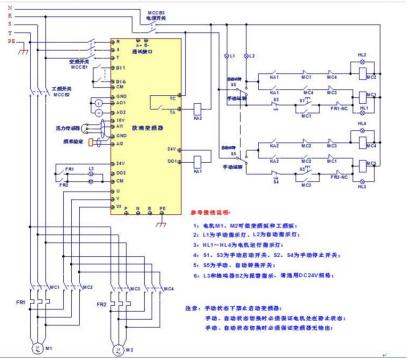

从机不正常时的应答:

地址	功能码	不正常代码	CRC 低字节	CRC 高字节
02	83	01	70	F0

功能码最高位置 1 不合法功能代码

附录 5 供水系统参考连线图

1、一拖二固定模式参考接线图



一拖二固定模式参考:

- (1) 参考上图进行接线,参考压力表接线说明,检查接线后合上电源开关 MCCB3;
- (2)设置变频器的功能参数 F208=1 (或者使用其他启停机方式,这里用两线式举例),F203=9,FA00=1,FA36=1,FA37=1,FA47=1,FA48=2,FA04=设定压力百分比;FA03=设定管道极限压力;FA05 设定起泵压力百分比。
- (3) 手动控制时合上工频开关 MCCB2: 按下 S1 水泵 M1 工频工作,按下 S2 水泵 M1 停止工作,按下 S3 水泵 M2 工频工作,按下 S4 则水泵 M2 停止工作;

- (4) 自动控制时合上变频开关 MCCB1 和工频开关 MCCB2:
 - 变频器得电,短接 DI3 端子正转运行变频器(或者短接 DI4 端子反转运行变频器),水泵 MI 变频工作;
 - 若压力不足,变频器加速到上限频率;延时 FA31 时间后压力依然不足,变频器自由停车同时投上水泵 M2 工频运行;延时 FA30 时间后变频器运行,水泵 M1 变频工作。
 - 两泵同时运行,若压力过大,变频器减速到下限频率,延时FA32时间后压力依然过大,切掉工频水泵M2.
 - 若单泵 M1 变频工作在下限频率运行, 经 FA10 时间后自由停车, 进入休眠状态, 变频器显示: "SLP"。

2、一拖二定时轮换模式参考接线

一拖二定时轮换模式参考:

- (1) 参考上图进行接线,参考压力表接线说明,检查接线后合上电源开关 MCCB3;
- (2)设置变频器的功能参数 F208=1(或者使用其他启停机方式,这里用两线式举例),F203=9,FA00=2,FA36=1 FA37=1 FA47=1 FA48=2,FA04=设定压力百分比;FA03=设定管道极限压力;FA05设定起泵压力百分比。

- (3) 手动控制时合上工频开关 MCCB2: 按下 S1 水泵 M1 工频工作,按下 S2 水泵 M1 停止工作,按下 S3 水泵 M2 工频工作。按下 S4 则水泵 M2 停止工作;
- (4) 自动控制时合上变频开关 MCCB1 和工频开关 MCCB2:
 - 变频器得电, KA1 动作. 短接 DI3 端子正转运行变频器, 水泵 M1 为变频泵, 当压力不足, 变频器加速到上限频率, 延时 FA31 时间后压力依然不足, 变频器自由停车同时 KA2 投上水泵 M2 工频运行; 延时 FA30 时间后变频器运行, 水泵 M1 变频工作。
 - 经过 FA25 轮换时间后(上电有效, FA24 可设置单位),水泵全部自由停车,然后 KA2 动作,水泵
 M2 为变频泵,当压力不足,变频器加速到上限频率;延时 FA31 时间后压力依然不足,变频器自由停车同时 KA1 投上水泵 M1 工频运行;延时 FA30 时间后变频器运行,水泵 M2 变频工作。
 - 两泵同时运行,若压力过大,变频器减速到下限频率,延时FA32时间后压力依然过大,切掉工频水泵:
 - 若单泵变频工作在下限频率运行, 经 FA10 时间后自由停车, 进入休眠状态, 变频器显示: "SLP"。

附录 6 功能码速查表

基本参数区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F100	用户密码	0~9999		√	0x0100
F102	变频器额定电流		根据机型	O*	0x0102
F103	变频器功率		根据机型	O*	0x0103
F105	软件版本号		根据机型	Δ	0x0105
F106	控制方式	0: 无速度传感器矢量控制 (SVC) 2: V/F 控制 3: 矢量控制 1 6: PMSM 无速度传感器矢量控制	2	×	0x0106
F107	密码是否有效	0: 无效; 1: 有效	0	1	0x0107
F108	用户密码设置	0~9999	8	√	0x0108
F109	起动频率(Hz)	0.0~10.00	0. 0	1	0x0109
F110	起动频率保持时间(S)	0.0~999.9	0. 0	√	0×010A
F111	上限频率(Hz)	F113~590. 0	50. 00	1	0x010B
F112	下限频率(Hz)	0. 00∼F113	0. 50	√	0x010C
F113	目标频率(Hz)	F112~F111	50. 00	√	0x010D
F114	第一加速时间(S)	0.1~3000		√	0x010E
F115	第一减速时间(S)	0.1~3000	根据机型	√	0x010F
F116	第二加速时间(S)	0.1~3000		√	0x0110
F117	第二减速时间(S)	0.1~3000	根据机型	1	0x0111
F119	加减速时间参考值	0: 0~50 1: 0~F111	0	×	0x0113
F120	正反转切换死区时间(S)	0.0~3000	0. 0	√	0x0114

F122	反转禁止	0: 无效; 1: 有效	0	×	0x0116
F123	组合调速负频率允许	0: 无效; 1: 有效	0	×	0x0117
F124	点动频率(Hz)	F112~F111	5. 00	√	0x0118
F125	点动加速时间(S)	0.1~3000	10 10 10 mil	√	0x0119
F126	点动减速时间(S)	0.1~3000	根据机型	√	0x011A
F127	频率回避点 A(Hz)	0.00~590.0	0.00	√	0x011B
F128	A 点回避宽度 (Hz)	0. 00~2. 50	0.00	√	0x011C
F129	频率回避点 B (Hz)	0.00~650.0	0. 00	√	0x011D
F130	B 点回避宽度 (Hz)	0. 00~2. 50	0.00	√	0x011E
F131	运行显示选项	0: 当前输出频率/功能码 1: 当前输出转速 (rpm) 2: 输出电流 (A) 4: 输出电压 (V) 8: 直流母线电压 (V) 16: PID 反馈值 (%) 32: 温度 (°C) 64: 计数值 128: 线速度 256: PID 设定值 (%) 512: 保留 1024: 保留 2048: 输出功率 (kW) 4096: 输出转矩 (%)	0+1+2+4+ 8=15	J	0x011F
F132	停机显示选项	0: 频率/功能码; 1: 控制面板点动; 2: 目标转速(rpm); 4: 直流母线电压(V); 8: PID 反馈值(%); 16: 温度(°C); 32: 计数值; 64: PID 设定值(%) 128: 保留 256: 保留	2+4=6	J	0x0120

		512: 设定转矩(%)			
F133	被拖动系统传动比	0. 10~200. 0	1.00	√	0x0121
F134	传动轮半径(m)	0.001~1.000	0. 001	√	0x0122
F136	转差补偿(%)	0~10	0	×	0x0124
F137	转矩补偿方式	0: 直线型补偿 1: 次方型补偿 2: 自定义多点式补偿 3: 自动转矩补偿 4: VF 分离	0	×	0x0125
F138	直线型补偿	1~20	根据机型	×	0x0126
F139	次方型补偿	1: 1.5 次方; 2: 1.8 次方; 3: 1.9 次方; 4: 2 次方; 5: 保留;	1	×	0x0127
F140	电压补偿拐点频率(Hz)	0∼F142	1.00	×	0x0128
F141	电压补偿 1 (%)	0~100	根据机型	×	0x0129
F142	自定义频率点 F2(Hz)	F140~F144	5. 00	×	0x012A
F143	自定义电压点 V2(%)	0~100	13	×	0x012B
F144	自定义频率点 F3 (Hz)	F142~F146	10.00	×	0x012C
F145	自定义电压点 V3(%)	0~100	24	×	0x012D
F146	自定义频率点 F4(Hz)	F144~F148	20. 00	×	0x012E
F147	自定义电压点 V4(%)	0~100	45	×	0x012F
F148	自定义频率点 F5 (Hz)	F146~F150	30. 00	×	0x0130
F149	自定义电压点 V5(%)	0~100	63	×	0x0131
F150	自定义频率点 F6(Hz)	F148~F810	40. 00	×	0x0132
F151	自定义电压点 V6(%)	0~100	81	×	0x0133
F152	转折频率对应输出电压 (%)	0~100	100	×	0x0134
F153	载波频率设定	根据机型	根据机型	×	0x0135
F154	自动电压调整	0: 无效 1: 始终有效	0	×	0x0136

		2: 仅在减速过程中无效			
F155	数字辅频率设定(Hz)	0∼F111	0	×	0x0137
F156	数字辅频率极性设定	0~1	0	×	0x0138
F157	辅频率查看			Δ	0x0139
F158	辅频率极性查看			Δ	0x013A
F159	随机载波选择	0: 禁止; 1: 允许	1	×	0x013B
F160	恢复出厂值	0: 不恢复; 1: 恢复	0	×	0x013C

运行控制区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
		0: 控制面板指令			
		1: 端子指令			
F200	起动指令来源	2:控制面板+端子	4	×	0x0200
		3: Modbus			
		4:控制面板+端子+Modbus			
		0:控制面板指令			
		1: 端子指令			
F201	停机指令来源	2:控制面板+端子	4	×	0x0201
		3: Modbus			
		4:控制面板+端子+Modbus			
		0: 正转锁定			
F202	方向给定方式	1: 反转锁定	0	×	0x0202
		2: 端子给定			
	主频率来源 X	0:数字给定记忆;			
		1:外部模拟量 AI1;			
		2: 外部模拟量 AI2;			
		3: 输入脉冲给定;			
		4: 段速调节;			
F203		5: 数字给定不记忆;	0	×	0x0203
		6: 模拟量 AI3;			
		7: 保留;			
		8: 保留;			
		9: PID 调节;			
		10: Modbus			
		0: 数字给定记忆;			
		1: 外部模拟量 AI1;			
		2: 外部模拟量 AI2;			
F204	 辅助频率来源	3: 输入脉冲给定;	0	×	0x0204
		4: 段速调节;			
		5: PID 调节;			
		6: 模拟量 AI3			
		0: 相对于上限频率	_		
F205	辅助频率 Y 范围选择	1:相对于主频率 X	0	×	0x0205

F206	辅助频率 Y 范围(%)	0~100	100	×	0x0206
F207	频率源选择	0: X 1: X+Y 2: XorY (不切换 x 优先 y, 端子切换) 3: XorX+Y (端子切换) 4: 段速和模拟量组合 5: X-Y 6: X+Y-YMAX*50% 9: X/Y 10: Max(X, Y) 11: Min(X, Y)	0	×	0x0207
F208	端子二线 / 三线运转控制	0: 无 1: 两线式 1 2: 两线式 2 3: 三线式运转控制 1 4: 三线式运转控制 2 5: 方向脉冲起/停	0	×	0x0208
F209	电机停机方式选择	0:按减速时间停机 1:自由停机	0	×	0x0209
F210	频率显示精度(Hz/S)	0.01~10.00	0. 01	√	0x020A
F211	数字调速快慢	0. 01~100. 00	5. 00	√	0x020B
F212	方向记忆	0: 无效 1: 有效	0	1	0x020C
F213	重新上电自起动	0: 无效 1: 有效	0	1	0x020D
F214	复位后是否自起动	0: 无效 1: 有效	0	1	0x020E
F215	自起动延时时间(S)	0.1~3000	60. 0	√	0x020F
F216	故障重复自起动次数	0~5	0	1	0x0210
F217	重复自起间隔时间(S)	0.0~10.0	3. 0	1	0x0211
F219	通讯写 EEPROM	0: 允许; 1: 禁止	1	√	0x0213

F220	频率记忆功能	0: 无效; 1: 有效	0	√	0x0214
F222	计数记忆选择	0: 无效; 1: 有效	0	√	0x0216
F224	目标频率低于下限处理	0: 停机; 1: 以下限频率运行	0	×	0x0218
F226	频率回避处理模式	0: 加减速过程无效; 1: 减速过程无效; 2: 全程有效;	0	×	0x021A
F277	第三加速时间(S)			1	0x024D
F278	第三减速时间(S)	0.4.0000	In In In W	1	0x024E
F279	第四加速时间(S)	0.1~3000	根据机型	√	0x024F
F280	第四减速时间(S)			√	0x0250

多功能输入输出区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F300	继电器表征输出	0: 无功能 1: 变频器故障保护 2: 过特征频率 1 3: 过特征频率 2 4: 自由停机 5: 变频器运行中 1 6: 直流制动中 7: 加减速时间切换	1	√	0x0300
F301	D01 表征输出	8: 设定计数值到达 9: 指定计数值到达 10: 变频器过载预报警 11: 电机过载预报警 12: 失速中 13: 变频器准备就绪功能 14: 变频器运行中 2 15: 频率到达输出 16: 过热预报警 17: 过特征电流输出 18: 模拟量断线保护 19: 欠载保护 20: 零电流检测输出	14	J	0x0301
F302	D02 表征输出	21: 上位机写 D01 22: 上位机写 D02 23: 上位机写 TA\TC. 24: 看门狗输出表征 25~27: 保留 28: 休眠 30: 工频泵工作指示 31: 变频泵工作指示 32: 过极限压力表征输出 33~40: 保留	5	✓	0x0302
F303	D01 输出方式选择	0: 开关电平输出; 1: 脉冲输出	0	√	0x0303
F304	S 曲线开始段比例 (%)	2.0~50.0	30. 0	√	0x0304
F305	S 曲线结束段比例 (%)	2. 0~50. 0	30. 0	√	0x0305
F306	加减速方式	0: 直线加减速 1: S 曲线加减速	0	×	0x0306

F307	特征频率 1(Hz)	F112~F111	10.00	√	0x0307
F308	特征频率 2(Hz)	F112~F111	50. 00	√	0x0308
F309	特征频率宽度(%)	0~100	50	√	0x0309
F310	特征电流(A)	0~1000	额定电流	√	0x030A
F311	特征电流滞环宽度 (%)	0~100	10	√	0x030B
F312	频率到达域值(Hz)	0.00~5.00	0.00	√	0x030C
F313	计数分频数	1~65000	1	√	0x030D
F314	设定计数值	F315~65000	1000	√	0x030E
F315	指定计数值	1∼F314	500	√	0x030F
F316	DI1 功能设定	0: 无功能 1: 运行	11	√	0x0310
F317	DI2 功能设定	2: 停机 3: 多段速 1 4: 多段速 2 5: 多段速 3 6: 多段速 4	9	√	0x0311
F318	DI3 功能设定	7: 复位 8: 自由停机 9: 外部急停 10: 禁止加减速 11: 正转点动	15	√	0x0312
F319	DI4 功能设定	12: 反转点动 13: UP 频率递增 14: DOWN 频率递减 15: FWD 正转 16: REV 反转 17: 三线式输入 X 使能 18: 加减速切换 1 19: 保留 20: 保留	16	√	0x0313

		21:频率源切换			
		22: 计数输入			
		23: 计数复位			
F320	DI5 功能设定	30: 缺水信号	7	√	0x0314
		31: 有水信号			
		32:消防压力切换			
		33: 紧急消防控制			
		34:加减速切换 2			
F321	DI6 功能设定	37: 常开触点热保护	8	√	0x0315
		38: 常闭触点热保护			
		53: 看门狗 			
F322	DI7 功能设定	│ 54: 频率复位 │ 61: 启停端子	1	√	0x0316
F323	DI8 功能设定	01. Na 17 Au 1	2	√	0x0317
F324	自由停机端子逻辑	0: 正逻辑; 1: 负逻辑	0	×	0x0318
F325	外部急停端子逻辑	0:正逻辑;1:负逻辑	0	×	0x0319
F326	看门狗定时时间 (S)	0.0: 看门狗功能无效 0.1~3000	10. 0	√	0x031A
F327	看门狗停机选择	0: 立即停机 1: 减速停机	0	×	0x031B
F328	端子滤波次数	1~100	20	√	0x031C
F330	数字输入端子状态 显示			Δ	0x031E
F331	监视模拟量 AI1			Δ	0x031F
F332	监视模拟量 AI2			Δ	0x0320
F333	监视模拟量 AI3			Δ	0x0321
F335	继电器输出诊断	0: 输出无效 1: 输出有效	0	×	0x0323
F336	D01 输出诊断		0	×	0x0324
F337	D02 输出诊断		0	×	0x0325
F338	A01 输出诊断	0~4095	0	×	0x0326
F339	A02 输出诊断	0~4095	0	×	0x0327

		0: 无效			
F340	端子负逻辑选择	1: DI1 负逻辑 2: DI2 负逻辑 4: DI3 负逻辑 8: DI4 负逻辑 16: DI5 负逻辑 32: DI6 负逻辑 64: DI7 负逻辑 128: DI8 负逻辑	0	√	0x0328
F343	DI1 闭合延时时间 (S)	0.00~99.99	0.00	√	0x032B
F344	DI2 闭合延时时间 (S)	0.00~99.99	0. 00	√	0x032C
F345	DI3 闭合延时时间 (S)	0.00~99.99	0. 00	√	0x032D
F346	DI4 闭合延时时间 (S)	0.00~99.99	0.00	√	0x032E
F347	DI5 闭合延时时间 (S)	0.00~99.99	0.00	√	0x032F
F348	DI6 闭合延时时间 (S)	0.00~99.99	0. 00	√	0x0330
F351	DI1 断开延时时间 (S)	0.00~99.99	0. 00	√	0x0333
F352	DI2 断开延时时间 (S)	0.00~99.99	0. 00	√	0x0334
F353	DI3 断开延时时间 (S)	0.00~99.99	0. 00	√	0x0335
F354	DI4 断开延时时间 (S)	0.00~99.99	0.00	√	0x0336
F355	DI5 断开延时时间 (S)	0.00~99.99	0.00	√	0x0337
F356	DI6 断开延时时间 (S)	0.00~99.99	0.00	√	0x0338
F359	停机指令优先级	0: 无效; 1: 有效	0	√	0x033B
F360	DO 端子负逻辑	0: 无效 1: D01 负逻辑 2: D02 负逻辑 4: 继电器 1	0	√	0x033C

模拟量输入输出区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F400	AI1 通道输入下限(V)	0. 00∼F402	0. 04	√	0x0400
F401	AI1 输入下限对应设定	0∼F403	1. 00	√	0x0401
F402	AI1 通道输入上限(V)	F400~10.00	10. 00	√	0x0402
F403	AI1 输入上限对应设定	0. 00~2. 00	2. 00	√	0x0403
F404	 AI1 通道比例增益 K1	0.0~10.0	1. 0	√	0x0404
F405	AI1 滤波时间常数(S)	0. 01~10. 00	0. 10	√	0x0405
F406	AI2 通道输入下限(V)	0. 00∼F408	0. 04	√	0x0406
F407	AI2 输入下限对应设定	0∼F409	1. 00	√	0x0407
F408	AI2 通道输入上限(V)	F406~10.00	10. 00	√	0x0408
F409	AI2 输入上限对应设定	0. 00~2. 00	2. 00	√	0x0409
F410	 AI2 通道比例增益 K2	0.0~10.0	1. 0	√	0x040A
F411	AI2 滤波时间常数(S)	0. 01~10. 00	0. 10	√	0x040B
F412	AI3 通道输入下限(V)	0. 00∼F414	0. 05	0	0x040C
F413	AI3 输入下限对应设定	0∼F415	1. 00	√	0x040D
F414	AI3 通道输入上限(V)	F412~10.0	10. 00	0	0x040E
F415	AI3 输入上限对应设定	Max (1.00, F413) ∼ 2.00	2. 00	√	0x040F
F416	AI3 通道比例增益 K3	0.0~10.0	1. 0	√	0x0410

F417	AI3 滤波时间常数(S)	0.01~10.00	0. 10	√	0x0411
F418	AI1 通道 0Hz 电压死区(V)	0~1.00	0.00	√	0x0412
F419	AI2 通道 OHz 电压死区(V)	0~1.00	0. 00	1	0x0413
F420	AI3 通道 OHz 电压死区(V)	0~0.50(正负)	0. 00	√	0x0414
F421	显示面板选择	1:本地远控自动切换 2:本地远控都显示	1	01	0x0415
F422	面板电位器选择	0:本地面板电位器 1:远控面板电位器	0	√	0x0416
F423	A01 输出范围选择	0: 0~5V 1: 0~10V或0~20mA 2: 4~20mA	1	√	0x0417
F424	 A01 输出最低对应频率(Hz)	0. 0∼F425	0. 05	√	0x0418
F425	A01 输出最高对应频率(Hz)	F424~F111	50. 00	√	0x0419
F426	A01 输出补偿(%)	0~120	100	✓	0x041A
F427	A02 输出范围	0: 0~20mA; 1: 4~20mA	0	√	0x041B
F428	A02 输出最低对应频率(Hz)	0. 0~F429	0. 05	√	0x041C
F429	A02 输出最高对应频率(Hz)	F428~F111	50. 00	√	0x041D
F430	A02 输出补偿(%)	0~120	100	√	0x041E
F431	A01 模拟输出信号选择	0:运行频率	0	4	0x041F

F432	A02 模拟输出信号选择	1: 输出电流 2: 输出电压 3: 模拟量 AI1 4: 模拟量 AI2 5: 保留 6: 保留 7: 上位机控制 8: 目标频率	1	√	0x0420
F433	外接电压表满量程对应电 流	0.01~5.00倍额定 电流	2	×	0x0421
F434	外接电流表满量程对应电 流	0.01~5.00倍额定 电流	2	×	0x0422
F437	模拟量滤波宽度	1~100	10	1	0x0425
F438	模拟量 AI1 输入类型	0: 电压型 1: 电流型	0	×	0x0426
F439	模拟量 AI2 输入类型	0: 电压型 1: 电流型	1	×	0x0427
F440	FI 输入脉冲最低频率(KHz)	0. 00∼F442	0. 00	√	0x0428
F441	FI 最低频率对应的设定	0. 00∼F443	1.00	√	0x0429
F442	FI 输入脉冲最高频率(KHz)	F440~100.00	10. 00	√	0x042A
F443	FI 最大频率对应的设定	Max (1.00, F441) ∼ 2.00	2. 00	√	0x042B
F445	FI 输入脉冲滤波常数	0~1000	0	1	0x042D
F446	FI 通道 OHz 频率死区(KHz)	0~F442(正负)	0.00	1	0x042E
F448	FI 比例增益	0.001~2.000	1.000	1	0x0430
F449	F0 输出脉冲最高频率(KHz)	0.00~100.00	10. 00	1	0x0431
F450	F0 输出脉冲频率零偏系数 (%)	0.0~100.0	0. 0	√	0x0432

F451	F0 输出脉冲频率增益	0.00~10.00	1. 00	√	0x0433
F453	F0 输出脉冲信号选择	0: 运行频率 1: 输出电流 2: 输出电压 3: 模拟量 Al1 4: 模拟量 Al2 5: 输入脉冲 6: 输出转矩 7: 上位机控制 8: 目标频率	0	√	0x0435
F460	AI1 通道输入方式选择	0: 直线式; 1: 折线式	0	×	0x043C
F461	AI2 通道输入方式选择	0: 直线式; 1: 折线式	0	×	0x043D
F462	AI1 插入点 A1 的电压值(V)	F400~F464	2. 00	×	0x043E
F463	AI1 插入点 A1 对应设定	F401~F465	1. 20	×	0x043F
F464	AI1 插入点 A2 的电压值(V)	F462~F466	5. 00	×	0x0440
F465	AI1 插入点 A2 对应设定	F463~F467	1. 50	×	0x0441
F466	AI1 插入点 A3 的电压值(V)	F464~F402	8. 00	×	0x0442
F467	AI1 插入点 A3 对应设定	F465~F403	1. 80	×	0x0443
F468	AI2 插入点 B1 的电压值(V)	F406~F470	2. 00	×	0x0444
F469	AI2 插入点 B1 对应设定	F407~F471	1. 20	×	0x0445
F470	AI2 插入点 B2 的电压值 (V)	F468~F472	5. 00	×	0x0446
F471	AI2 插入点 B2 对应设定	F469~F473	1. 50	×	0x0447
F472	AI2 插入点 B3 的电压值 (V)	F470~F408	8. 00	×	0x0448
F473	AI2 插入点 B3 对应设定	F471~F409	1.80	×	0x0449

多段速度区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F500	段速类型	0: 三段速 1: 15 段速 2: 最多 8 段速度自动 循环	1	×	0×0500
F501	自动循环段数选择	2~8	7	√	0x0501
F502	自动循环次数选择	0~9999(为0时无限 循环)	0	√	0×0502
F503	循环运行次数结束后的状态	0: 停机 1: 保持最后一段速度 运行	0	√	0×0503
F504	第 1 段速度频率设定(Hz)	F112~F111	5. 00	√	0x0504
F505	第 2 段速度频率设定(Hz)	F112~F111	10. 00	√	0x0505
F506	第3段速度频率设定(Hz)	F112~F111	15. 00	√	0x0506
F507	第 4 段速度频率设定(Hz)	F112~F111	20. 00	√	0x0507
F508	第 5 段速度频率设定(Hz)	F112~F111	25. 00	√	0x0508
F509	第6段速度频率设定(Hz)	F112~F111	30. 00	√	0x0509
F510	第7段速度频率设定(Hz)	F112~F111	35. 00	√	0×050A
F511	第8段速度频率设定(Hz)	F112~F111	40. 00	√	0x050B
F512	第9段速度频率设定(Hz)	F112~F111	5. 00	√	0x050C
F513	第 10 段速度频率设定(Hz)	F112~F111	10. 00	√	0x050D
F514	第 11 段速度频率设定(Hz)	F112~F111	15. 00	√	0x050E
F515	第 12 段速度频率设定(Hz)	F112~F111	20. 00	√	0x050F
F516	第 13 段速度频率设定(Hz)	F112~F111	25. 00	√	0x0510
F517	第 14 段速度频率设定(Hz)	F112~F111	30. 00	√	0x0511
F518	第 15 段速度频率设定(Hz)	F112~F111	35. 00	√	0x0512

F519	第 1 段速度加速时间设定(S)	0.1~3000		√	0x0513
F520	第2段速度加速时间设定(S)	0.1~3000		7	0x0514
F521	第3段速度加速时间设定(S)	0.1~3000			√
F522	第4段速度加速时间设定(S)	0.1~3000		√	0x0516
F523	第5段速度加速时间设定(S)	0.1~3000		√	0x0517
F524	第6段速度加速时间设定(S)	0.1~3000		√	0x0518
F525	第7段速度加速时间设定(S)	0.1~3000		√	0x0519
F526	第8段速度加速时间设定(S)	0.1~3000		√	0x051A
F527	第9段速度加速时间设定(S)	0.1~3000		√	0x051B
F528	第 10 段速度加速时间设定(S)	0.1~3000		√	0x051C
F529	第 11 段速度加速时间设定(S)	0.1~3000		√	0x051D
F530	第 12 段速度加速时间设定(S)	0.1~3000	根据机型	√	0x051E
F531	第 13 段速度加速时间设定(S)	0.1~3000		√	0x051F
F532	第 14 段速度加速时间设定(S)	0.1~3000		√	0x0520
F533	第 15 段速度加速时间设定(S)	0.1~3000		√	0x0521
F534	第1段速度减速时间设定(S)	0.1~3000		√	0x0522
F535	第2段速度减速时间设定(S)	0.1~3000		√	0x0523
F536	第3段速度减速时间设定(S)	0.1~3000		√	0x0524
F537	第 4 段速度减速时间设定(S)	0.1~3000		√	0x0525
F538	第 5 段速度减速时间设定(S)	0.1~3000		√	0x0526
F539	第 6 段速度减速时间设定(S)	0.1~3000		√	0x0527
F540	第7段速度减速时间设定(S)	0.1~3000		√	0x0528
F541	第8段速度减速时间设定(S)	0.1~3000		√	0x0529
F542	第9段速度减速时间设定(S)	0.1~3000		√	0x052A

F543 第 10 段速度減速时间设定(S) 0.1~3000 ✓ 0x052B F544 第 11 段速度減速时间设定(S) 0.1~3000 根据机型 ✓ 0x052D F545 第 12 段速度減速时间设定(S) 0.1~3000 √ 0x052E F546 第 13 段速度減速时间设定(S) 0.1~3000 ✓ 0x052F F548 第 15 段速度減速时间设定(S) 0.1~3000 ✓ 0x0530 F549 第 1段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0531 F550 第 2 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0532 F551 第 3 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0534 F552 第 4 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0534 F553 第 5 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0536 F554 第 6 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0536 F553 第 7 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0536 F555 第 7 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0537 F556 第 8 段速度运行方向 0: 正转; 1: 反转 0 ✓ 0x0538 F557 第 1 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0538 F559 第 3 段速度运行时间(S)						
F545	F543	第 10 段速度减速时间设定(S)	0.1~3000		√	0x052B
F546 第13 段速度減速时间设定 (S) 0.1~3000	F544	第 11 段速度减速时间设定(S)	0.1~3000		7	0x052C
F546 第 13 段速度減速时间设定(S) 0.1~3000	F545	第 12 段速度减速时间设定(S)	0.1~3000		√	0x052D
F548 第15段速度減速时间设定(S) 0.1~3000	F546	第 13 段速度减速时间设定(S)	0.1~3000	】 根据机型	1	0x052E
F549 第1段速度运行方向	F547	第 14 段速度减速时间设定(S)	0.1~3000		1	0x052F
F550 第 2 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0532 F551 第 3 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0533 F552 第 4 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0534 F553 第 5 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0535 F554 第 6 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0535 F555 第 7 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F556 第 8 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F556 第 8 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F557 第 1 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0538 F557 第 1 段速度运行时间(S) 0.1~3000 1.0 √ 0x0538 F559 第 3 段速度运行时间(S) 0.1~3000 1.0 √ 0x0538 F560 第 4 段速度运行时间(S) 0.1~3000 1.0 √ 0x0538 F561 第 5 段速度运行时间(S) 0.1~3000 1.0 √ 0x0530 F562 第 6 段速度运行时间(S) 0.1~3000 1.0 √ 0x0530 F563 第 7 段速度运行时间(S) 0.1~3000 1.0 √ 0x0535 F564 第 8 段速度运行时间(S) 0.1~3000 1.0 √ 0x0535 F565 第 1 段结束后停机时间(S) 0.1~3000 1.0 √ 0x0540 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0541	F548	第 15 段速度减速时间设定(S)	0.1~3000		1	0×0530
F551 第 3 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0533 F552 第 4 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0534 F553 第 5 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0535 F554 第 6 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0536 F555 第 7 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F556 第 8 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F556 第 8 段速度运行方向 0: 正转; 1: 反转 0 √ 0x0538 F557 第 1 段速度运行时间(S) 0.1~3000 1.0 √ 0x0539 F558 第 2 段速度运行时间(S) 0.1~3000 1.0 √ 0x0534 F559 第 3 段速度运行时间(S) 0.1~3000 1.0 √ 0x0538 F560 第 4 段速度运行时间(S) 0.1~3000 1.0 √ 0x0530 F561 第 5 段速度运行时间(S) 0.1~3000 1.0 √ 0x0530 F562 第 6 段速度运行时间(S) 0.1~3000 1.0 √ 0x0535 F563 第 7 段速度运行时间(S) 0.1~3000 1.0 √ 0x0535 F564 第 8 段速度运行时间(S) 0.1~3000 1.0 √ 0x0535 F565 第 1 段结束后停机时间(S) 0.1~3000 1.0 √ 0x0540 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F549	第 1 段速度运行方向	0: 正转; 1: 反转	0	1	0x0531
 F552 第4段速度运行方向 D: 正转; 1: 反转 D √ 0x0534 F553 第5段速度运行方向 D: 正转; 1: 反转 D √ 0x0535 D √ 0x0536 D ← 区域・	F550	第2段速度运行方向	0: 正转; 1: 反转	0	√	0x0532
F553 第5段速度运行方向 0: 正转; 1: 反转 0 √ 0x0535 F554 第6段速度运行方向 0: 正转; 1: 反转 0 √ 0x0536 F555 第7段速度运行方向 0: 正转; 1: 反转 0 √ 0x0537 F556 第8段速度运行方向 0: 正转; 1: 反转 0 √ 0x0538 F557 第1段速度运行时间(S) 0.1~3000 1.0 √ 0x0539 F558 第2段速度运行时间(S) 0.1~3000 1.0 √ 0x053A F559 第3段速度运行时间(S) 0.1~3000 1.0 √ 0x053B F560 第4段速度运行时间(S) 0.1~3000 1.0 √ 0x053C F561 第5段速度运行时间(S) 0.1~3000 1.0 √ 0x053D F562 第6段速度运行时间(S) 0.1~3000 1.0 √ 0x053E F563 第7段速度运行时间(S) 0.1~3000 1.0 √ 0x053F F564 第8段速度运行时间(S) 0.1~3000 1.0 √ 0x0540 F565 第1段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F551	第3段速度运行方向	0: 正转; 1: 反转	0	√	0x0533
F554 第 6 段速度运行方向	F552	第4段速度运行方向	0: 正转; 1: 反转	0	√	0x0534
F555 第7段速度运行方向	F553	第 5 段速度运行方向	0: 正转; 1: 反转	0	√	0x0535
F556 第8段速度运行方向 0: 正转; 1: 反转 0 √ 0x0538 F557 第1段速度运行时间(S) 0.1~3000 1.0 √ 0x0539 F558 第2段速度运行时间(S) 0.1~3000 1.0 √ 0x053A F559 第3段速度运行时间(S) 0.1~3000 1.0 √ 0x053B F560 第4段速度运行时间(S) 0.1~3000 1.0 √ 0x053C F561 第5段速度运行时间(S) 0.1~3000 1.0 √ 0x053D F562 第6段速度运行时间(S) 0.1~3000 1.0 √ 0x053E F563 第7段速度运行时间(S) 0.1~3000 1.0 √ 0x053F F564 第8段速度运行时间(S) 0.1~3000 1.0 √ 0x0540 F565 第1段结束后停机时间(S) 0.0~3000 0.0 √ 0x0541 F566 第2段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F554	第6段速度运行方向	0: 正转; 1: 反转	0	~	0x0536
F557 第1段速度运行时间(S)	F555	第7段速度运行方向	0: 正转; 1: 反转	0	~	0x0537
F558 第 2 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053A F559 第 3 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053B F560 第 4 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053C F561 第 5 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053D F562 第 6 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053E F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F556	第8段速度运行方向	0: 正转; 1: 反转	0	√	0x0538
F559 第 3 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053B F560 第 4 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053C F561 第 5 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053D F562 第 6 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053E F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F557	第 1 段速度运行时间(S)	0.1~3000	1.0	√	0x0539
F560 第 4 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053C F561 第 5 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053D F562 第 6 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053E F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F558	第2段速度运行时间(S)	0.1~3000	1.0	√	0x053A
F561 第 5 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053D F562 第 6 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053E F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F559	第3段速度运行时间(S)	0.1~3000	1.0	√	0x053B
F562 第 6 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053E F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F560	第4段速度运行时间(S)	0.1~3000	1.0	~	0x053C
F563 第 7 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x053F F564 第 8 段速度运行时间(S) 0.1~3000 1.0 ✓ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 ✓ 0x0542	F561	第 5 段速度运行时间(S)	0.1~3000	1.0	√	0x053D
F564 第 8 段速度运行时间(S) 0.1~3000 1.0 √ 0x0540 F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F562	第6段速度运行时间(S)	0.1~3000	1.0	~	0x053E
F565 第 1 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0541 F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F563	第7段速度运行时间(S)	0.1~3000	1.0	√	0x053F
F566 第 2 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0542	F564	第8段速度运行时间(S)	0.1~3000	1.0	√	0x0540
	F565	第 1 段结束后停机时间(S)	0.0~3000	0.0	√	0x0541
F567 第 3 段结束后停机时间(S) 0.0~3000 0.0 √ 0x0543	F566	第2段结束后停机时间(S)	0.0~3000	0.0	√	0x0542
	F567	第3段结束后停机时间(S)	0.0~3000	0.0	√	0x0543

F568	第4段结束后停机时间(S)	0.0~3000	0. 0	√	0x0544
F569	第 5 段结束后停机时间(S)	0.0~3000	0. 0	√	0x0545
F570	第 6 段结束后停机时间(S)	0.0~3000	0. 0	√	0x0546
F571	第7段结束后停机时间(S)	0.0~3000	0.0	√	0x0547
F572	第8段结束后停机时间(S)	0.0~3000	0.0	√	0x0548
F573	第9段速度运行方向	0: 正转; 1: 反转	0	√	0x0549
F574	第 10 段速度运行方向	0: 正转; 1: 反转	0	√	0x054A
F575	第 11 段速度运行方向	0: 正转; 1: 反转	0	√	0x054B
F576	第 12 段速度运行方向	0: 正转; 1: 反转	0	√	0×054C
F577	第 13 段速度运行方向	0: 正转; 1: 反转	0	√	0x054D
F578	第 14 段速度运行方向	0: 正转; 1: 反转	0	√	0x054E
F579	第 15 段速度运行方向	0: 正转; 1: 反转	0	√	0x054F
F580	段速模式选择	0: 模式 1(0000 无效, 0001 为第一段速,以此 类推) 1: 模式 2(0000 为第一段 速,0001 为第二段速,依 次类推,1111 无效)	0	√	0x0550

辅助功能区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F600	直流制动功能选择	0: 禁止 1: 起动前制动 2: 停机过程制动 3: 起动前和停机过程 均制动	0	×	0x0600
F601	直流制动起始频(Hz)	0. 20~50. 00	1.00	1	0x0601
F602	起动前直流制动效率(%)	30kW 及以下: 0~250 37kW 及以上: 0~200	50	×	0x0602
F603	停机直流制动效率(%)	30kW 及以下: 0~250 37kW 及以上: 0~200	100	×	0x0603
F604	起动前制动持续时(S)	0. 00~30. 00	0. 50	√	0x0604
F605	停机制动持续时间(S)	0. 00~30. 00	0.50	1	0x0605
F607	失速调节功能选择	0~2: 保留 3: 电压电流控制 4: 电压控制 5: 电流控制	3	1	0x0607
F608	过流失速阈值(%)	60~200	160	1	0x0608
F609	过压失速阈值(%)	110~200	根据机型	√	0x0609
F610	失速保护判断时间(S)	0.1~3000.0	60. 0	√	0x060A
F611	能耗制动阈值(V)	200~1000	根据机型	Δ	0x060B
F612	制动百分比(%)	0~100	80	×	0x060C
F613	转速追踪使能	0: 无效 1: 有效 2: 首次有效	0	×	0x060D

F614	转速追踪方式	设置范围: 0:从停机频率开始追踪; 1:从最大频率开始追踪; 2:从停机记忆频率跟踪且转向侦测有效; 3:从上限频率跟踪且转向侦测有效;	1	×	0x060E
F615	转速追踪快慢(%)	1~100	20	×	0x060F
F618	转速追踪延时时间(S)	0.5~60.0	1. 5	×	0x0614
F622	能耗制动方式	0: 固定占空比 1: 自动占空比	1	√	0x0620
F631	VDC 调节是否有效	0: 无效 1: 有效 2: 保留	0	√	0x061F
F632	VDC 调节器目标电压(V)	200~800	根据机型	√0	0x0620
F638	参数拷贝使能	0: 拷贝禁止 1: 参数下载1(电压 等级、功率全部一致) 2: 参数下载2(不 考虑电压等级和功 率)	1	×	0x0626
F639	参数拷贝代码		根据机型	Δ	0x0627
F640	参数拷贝类型	0: 全参数拷贝; 1: 参数拷贝(不包 括电机参数 F801~F810/F844)	1	×	0x0628
F641	低频振荡抑制增益	0~100; 0: 无效;	根据机型	×	0x0629

F671	V/F 分离给定电压通道	0: F672 1: AI1 2: AI2 3: AI3 4: 通讯给定 5: 脉冲给定 6: PID 给定	0	×	0x0647
F672	V/F 分离数字给定电压(%)	0.00~100.00	100. 00	√	0x0648
F673	V/F 分离给定电压下限(%)	0. 00∼F674	0. 00	×	0x0649
F674	V/F 分离给定电压上限(%)	F673~100.00	100. 00	×	0x064A
F675	V/F 分离电压加速时间(S)	0.0~3000.0	5. 0	√	0x064B
F676	V/F 分离电压减速时间(S)	0.0~3000.0	5. 0	√	0x064C
F677	V/F 分离停机方式	0: 电压/频率按照各 自的减速时间减至 0 1: 电压先减至 0 再减 频率 2: 频率先减至 0 再减 电压	0	×	0x064D
F678	V/F 分离电压判断	0: 不判断 1: 自动判 断	0	×	0x064E
F679	V/F 分离判断切换点(V)	200~600	430	×	0x064F
F680	V/F 分离切换点带宽(%)	0.0~100.0	0. 5	×	0x0650

定时控制保护区:

功能码	功能定义	设定范围	出厂值	更改	通讯地址
F700	端子自由停机方式选择	0:立即自由停机 1:延时自由停机	0	√	0x0700
F701	自由停机和可编程端子 动作延时时间(S)	0.0~60.0	0. 0	√	0x0701
F702	风扇控制选择	0: 风扇运转受温度控制 1: 风扇上电运转 2: 风扇运转受运行控制 3: 风扇定期运转	2	√	0x0702
F704	变频器过载预报警系数(%)	50~100	80	×	0x0704
F705	电机过载预报警系数(%)	50~100	80	×	0x0705
F706	变频器过载系数(%)	100~150	120	×	0x0706
F707	电机过载系数(%)	20~100	100	×	0x0707
F708	最近一次故障类型记录	2:00 过电流保护		Δ	0x0708
F709	倒数第二次故障类型记录 录	3: 0E 过电压保护 4: PF1 输入缺相		Δ	0x0709
F710	倒数第三次故障类型记 录	5: 0L1 变频器过载 6: LU 输入欠电压 7: 0H 变频器过热 8: 0L2 电机过载 11: ESP 外部急停 12: Err3 运行前电流故障 13:Err2 参数学习未接电机 15: Err4 电流采样故障 16: 过电流 0C1 保护 17: PF0 输出缺相 18: 保留 23: Err5 PID 参数设置错误 45: CE 通讯超时 49: 看门狗故障(Err6)		Δ	0x070A
F711	最近一次故障时故障频 率(Hz)	ALL STATE OF THE S		Δ	0x070B

F712	最近一次故障时故障电 流(A)			Δ	0x070C
F713	最近一次故障时直流母 线电压(V)			Δ	0x070D
F714	倒数第二次故障时故障 频率(Hz)			Δ	0x070E
F715	倒数第二次故障时故障 电流(A)			Δ	0x070F
F716	倒数第二次故障时直流 母线电压(V)			Δ	0x0710
F717	倒数第三次故障时故障 频率(Hz)			Δ	0x0711
F718	倒数第三次故障时故障 电流(A)			Δ	0x0712
F719	倒数第三次故障时直流 母线电压(V)			Δ	0x0713
F720	过电流保护故障次数记录			Δ	0x0714
F721	过电压保护故障次数记录			Δ	0x0715
F722	过热保护故障次数记录			Δ	0x0716
F723	过载保护故障次数记录			Δ	0x0717
F724	输入缺相	0: 无效; 1: 有效	1	×	0x0718
F725	欠压保护	1: 手动复位 2: 自动复位	2	×	0x0719
F726	过热	0: 无效;	1	O×	0x071A
F727	输出缺相	0: 无效;	根据机型	0	0x071B
F728	输入缺相滤波常数	0.1~60.0	0.5	√	0x071C
F729	保留				0x071D
F730	过热保护滤波常数	0.1~60.0	5. 0	√	0x071E
F732	欠压保护电压阈值(V)	100~450	根据机型	0	0x0720

F737	0C1 使能	0: 无效; 1: 有效	1	O×	0x0725
F738	001 保护系数	0.50~3.00	2. 50	×	0x0726
F739	001 保护次数记录			Δ	0x0727
F741	模拟量断线保护	0: 无动作; 1: 故障停机,显示 AErr; 2: 停机,不显示 AErr; 3: 保持下限频率运行; 4: 保留	0	4	0x0729
F742	断线保护判断阈值(%)	1~100	50	√	0x072A
F745	过热预报警阈值(%)	0~100	80	O*	0x072D
F747	载波自动调整使能	0: 无效; 1: 有效	1	√	0x072F
F753	过载保护选择	0: 普通电机; 1: 变频电机	1	×	0x0735
F754	零电流检测阈值(%)	0~200	5	×	0x0736
F755	零电流持续时间(S)	0.0~60.0	0. 5	√	0x0737
F760	接地保护	0: 无效 1: 上电有效 2: 运行有效 3: 运行和上电均有效	3	×	0x073C
F776	接地启动延时(S)	0.0~3600.0	2. 0	√	0x074C

电机参数区:

功能码	功能定义	设定范围	出厂值	更改	通讯地 址
F800	电机参数选择	0: 不进行参数测量 1: 旋转参数测量 2: 静止参数测量	0	×	0x0800
F801	额定功率(kW)	0.1~1000	根据机型	×	0x0801
F802	额定电压(V)	1~1300		×	0x0802
F803	额定电流(A)	0. 2~6553. 5		×	0x0803
F804	电机极数	2~100	4	×	0x0804
F805	额定转速(rpm)	1~39000		×	0x0805
F806	定子电阻	变频器功率≤15kW 0.001~65.53Ω 变频器功率>15kW 0.1~6553mΩ	根据机型	×	0x0806
F807	转子电阻 	变频器功率≤15kW 0.001~65.53Ω 变频器功率>15kW 0.1~6553mΩ	根据机型	×	0x0807
F808	漏感抗 (mH)	变频器功率≤15kW 0.01~655.3mH 变频器功率>15kW 0.001~65.53mH	根据机型	×	0x0808
F809	互感抗(mH)	变频器功率≤15kW 0.01~6553.0mH 变频器功率>15kW 0.001~655.3mH	根据机型	×	0x0809
F810	电机的额定频率 (Hz)	1.0~590.0	50. 00	O×	0x080A
F812	预励磁时间(S)	0.00~30.00 0.30		√	0x080C
F813	转速环 KP1		IO IO IN WI	√	0x080D
F814	转速环 KI1		根据机型	√	0x080E

F815	转速环 KP2			√	0x080F
F816	转速环 KI2			√	0x0810
F817	PI 切换频率 1 (Hz)	0∼F818		√	0x0811
F818	PI 切换频率 2 (Hz)	F817~F111		√	0x0812
F844	电机空载电流(A)	0. 1∼F803	根据机型	O ×	0x082C
F866	静止位置辨识使能	0: 无效; 1: 有效; 2: 首次运行有效	2	×	0x0842
F867	位置辨识电流	0~120	80	×	0x0843
F868	位置辨识频率	1000~16000	1000~16000 16000		0x0844
F870	PMSM 反电动势 (mV/rpm)	0.1~999.9(线间有效值)	根据机型	×	0x0846
F871	PMSM D 轴电感 (mH)	0.01~655.35		×	0x0847
F872	PMSM Q 轴电感 (mH)	0.01~655.35		×	0x0848
F873	PMSM 定子电阻 (ohm)	0.001~65.535(相电阻)		×	0x0849
F875	位置辨识角度补偿	0~1000	0	×	0x084B
F876	空载注入电流(%)	0.0~100.0	30. 0	×	0x084C
F878	空载注入电流补偿 截止点(%)	0.0~50.0		×	0x084E
F879	重载注入电流(%)	0.0~100.0 0.0		×	0x084F
F880	PCE 检出时间(S)	0.1~10.0	0. 2	×	0x0850

通讯参数区:

功能码	功能定义	设定范围	出厂值	更改	通讯地 址
F900	通讯地址	1~255: 单个变频器地址 0: 广播地址	1	√	0x0900
F901	通讯模式	1: ASCII 2: RTU	2	√	0x0901
F902	停止位位数	1~2	2		0x0902
F903	奇偶校验选择	0: 无奇偶校验 1: 奇校验 2: 偶校验	0	√	0x0903
F904	通讯波特率(bps)	0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600	3	J	0x0904
F905	通讯超时(S)	0.0~3000.0	0.0	1	0x0905

PID 参数区

功能码	功能定义	设定范围	出厂值	更改	通讯地址
FA00	供水工作模式	0: 单机拖动 (通用 PID 控制模式) 1: 固定模式 2: 定时轮换模式	0	×	0x0A00
FA01	PID 调节给定源	0: FA04 1: AI1 2: AI2 3: AI3 4: FI(脉冲频率输入)	0: FA04 1: AI1 2: AI2 0		0x0A01
FA02	PID 调节反馈源	1: AI1; 2: AI2 3: FI (脉冲频率输入) 4: 通讯给定 8: AI1-AI2 9: AI1+AI2 10: Max (AI1, AI2) 11: Min (AI1, AI2)		×	0x0A02
FA03	PID 调节上限(%)	FA04~100.0	100. 0	√	0x0A03
FA04	PID 调节数字给定值(%)	FA05~FA03	50. 0	√	0x0A04
FA05	PID 调节下限(%)	0. 0∼FA04	0. 0	√	0x0A05
FA06	PID 极性	0: 正作用; 1: 反作用	1	×	0x0A06
FA07	休眠使能	0: 有效; 1:无效	1	×	0x0A07
FA09	PID 调节下限频率(Hz)	F112~F111	5. 00	√	0x0A09
FA10	休眠等待时间(S)	0.0~500.0	15. 0	√	0x0A0A
FA11	唤醒时间(S)	0.0~3000	3. 0	√	0x0A0B
FA12	PID 输出上限频率	FA09~F111	50. 00	√	0x0A0C
FA18	PID 调节给定修改使能	0: 无效; 1: 有效	1	×	0x0A12
FA19	比例增益 P	0.00~10.00	0. 30	1	0x0A13
FA20	积分时间 I(S)	0.1~100.0	0. 3	√	0x0A14
FA21	微分时间 D(S)	0.0~10.0	0. 0	1	0x0A15
FA22	PID 采样周期(S)	0.1~10.0	0. 1	√	0x0A16

FA23	PID 负频率输出选择	0: 无效; 1: 有效; 2: 仅输出负频率	0	1	0x0A17
FA24	定时轮换时间单位	0: 小时; 1: 分钟	0	×	0x0A18
FA25	定时轮换时间	1~9999	100	×	0x0A19
FA26	欠载保护方式	0: 无保护 1: 触点式欠载保护 2: PID式欠载保护 3: 电流式欠载保护	0	×	0x0A1A
FA27	欠载保护电流阈值(%)	10~150	80	√	0x0A1B
FA28	欠载保护唤醒时间(min)	1~3000	60	√	0x0A1C
FA29	PID 死区(%)	0.0~10.0	2. 0	√	0x0A1D
FA30	变频泵再次起动延迟时间 (S)	2.0~999.9	20. 0	1	0x0A1E
FA31	投工频泵延时时间(S)	0.1~999.9	30. 0	√	0x0A1F
FA32	切工频泵延时时间(S)	0.1~999.9	30. 0	√	0x0A20
FA33	恒压供水停机方式	0: 自由停机; 1: 减速停机	0	×	0x0 A 21
FA36	1号继电器是否投入使用	0: 不使用 1: 使用	0	×	0x0A24
FA37	2号继电器是否投入使用	0: 不使用 1: 使用	0	×	0x0A25
FA47	1号继电器投入次序	1~20	20	×	0x0A2F
FA48	2号继电器投入次序	1~20	20	×	0x0A30
FA58	消防压力给定值(%)	0.0~100.0	80. 0	√	0x0A3A
FA59	紧急消防模式设定	0: 无效 1: 紧急消防模式 1 2: 紧急消防模式2	0	×	0x0A3B
FA60	紧急消防运行频率(Hz)	F112~F111	50. 00	√	0x0A3C
FA62	火警信号消失处理	0~1	0	×	0x0A3E
FA66	欠载保护持续时间(S)	0.0~60.0	30kW 及以 下: 20.0 37kW 及以 上: 1.0	1	0x0A42

转矩控制参数区

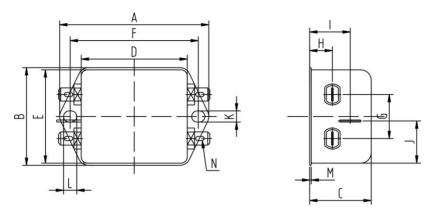
功能码	功能定义	设定范围	出厂值	更改	通讯地址
FC00	转速/转矩控制选择	0: 速度控制 1: 转矩控制 2: 端子切换	0	√	0x0C00
FC02	转矩加/减速时间(S)	0.1~100.0	1.0	1	0x0C02
FC06	转矩给定通道	0: 数字给定(FC09) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	0	×	0x0006
FC07	转矩给定系数	0~3.000	3. 000	×	0x0C07
FC09	转矩给定指令值(%)	0~300.0	100.0	√	0x0C09
FC14	偏置转矩给定通道	0: 数字给定(FC17) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	0	×	0x0C0E
FC15	偏置转矩系数	0~0.500	0. 500	×	0x0C0F
FC16	偏置转矩截止频率(%)	0~100.0	10. 00	×	0x0C10
FC17	偏置转矩指令值(%)	0~50.00	10.00	√	0x0C11
FC22	正转速度限定通道	0: 数字给定(FC23) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	0	×	0x0C16
F023	正转速度限定(%)	0.0~100.0	10. 0	1	0x0C17
F024	反转速度限定通道	0: 数字给定(FC25) 1: 模拟量输入 AI1 2: 模拟量输入 AI2 3: 模拟量输入 AI3 4: 脉冲输入通道 FI	0	×	0x0C18

FC25	反转速度限定(%)	0.0~100.0	10. 0	√	0x0C19
FC28	电动转矩限定通道	0: 数字给定(FC30) 1: 模拟量输入AI1 2: 模拟量输入AI2 3: 模拟量输入AI3 4: 脉冲输入通道FI	0	×	0x0C1C
FC29	电动转矩限定系数	0.0~3.000	3. 000	×	0x0C1D
FC30	电动转矩限定(%)	0.0~300.0	200. 0	√	0x0C1E
F033	再生转矩限定通道	0: 数字给定(FC35) 1: 模拟量输入AI1 2: 模拟量输入AI2 3: 模拟量输入AI3 4: 脉冲输入通道FI	0	×	0x0C21
FC34	再生转矩限定系数	0.000~3.000	3. 000	×	0×0C22
FC35	再生转矩限定(%)	0.0~300.0	200. 0	√	0x0C23

显示参数区:

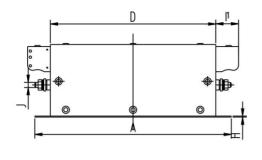
功能码	功能定义	设定范围	出厂值	更改	通讯地址
H000	运行频率/目标频率(Hz)			Δ	0x4300
H001	负载速度/目标转速 (rpm)			Δ	0x4301
H002	输出电流 (A)			Δ	0x4302
H003	输出电压(V)			Δ	0x4303
H004	母线电压(V)			Δ	0x4304
H005	PID 反馈值(%)			Δ	0x4305
H006	温度 (°C)			Δ	0x4306
H007	计数值			Δ	0x4307
H008	线速度			Δ	0x4308
H009	PID 设定值(%)			Δ	0x4309
H012	输出功率(kW)			Δ	0x430C
H013	输出转矩(%)			Δ	0x430D
H014	目标转矩(%)			Δ	0x430E
H017	多段速当前段数			Δ	0x4311
H018	输入脉冲频率(0.01KHz)			Δ	0x4312
H019	反馈速度(Hz)			Δ	0x4313
H020	反馈速度(rpm)			Δ	0x4314
H021	AI1 电压(数字量表示)			Δ	0x4315
H022	AI2 电压(数字量表示)			Δ	0x4316
H023	AI3 电压(数字量表示)			Δ	0x4317
H025	累计上电时间(分钟)			Δ	0x4319
H026	累计运行时间(分钟)			Δ	0x431A
H027	输入脉冲频率(Hz)			Δ	0x431B
H028	通讯设定值			Δ	0x431C
H029	累计运行时间(秒)			Δ	0x431D
Н030	主频率 X 显示(Hz)			Δ	0x431E
H031	辅频率 Y 显示(Hz)			Δ	0x431F
H036	累计上电时间(小时)			Δ	0x4324
Н037	累计运行时间(小时)			Δ	0x4325

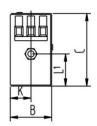
- 注: × 表示功能码只能在停机状态下进行修改。
 - √ 表示功能码在停机状态或运行过程中皆可进行修改。
 - △ 表示功能码在停机状态或运行过程中只能察看,不能修改。
 - 表示此类功能码在机器恢复出厂值时不能被初始化,只能手动修改。
 - * 表示厂家可修

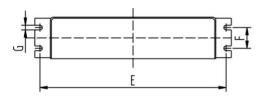

附录 7 输入滤波器型号及尺寸

一、输入滤波器选型

变频器型号	适配滤波器型号	备注
E800-0004S2	FN2060-6-06	单
E800-0007\$2	FN2060-10-06	相塑
E800-0015S2	FN2060-20-06	单相塑壳壁挂
E800-0022S2	FN2060-20-06	挂
E800-0007T2	FN3258-7-44	塑 三
E800-0015T2	FN3258-16-44	塑壳壁挂 宝相 220V
E800-0022T2	FN3258-16-44	挂 0
E800-0007T3	FN3258-7-44	
E800-0015T3	FN3258-7-44	
E800-0022T3	FN3258-16-44	
E800-0030T3	FN3258-16-44	
E800-0040T3	FN3258-16-44	=
E800-0055T3	FN3258-16-44	三相 380V 塑壳壁挂
E800-0075T3	FN3258-42-33	380V
E800-0110T3	FN3258-42-33	塑
E800-0150T3	FN3258-42-33	元 壁
E800-0185T3	FN3258-55-34	挂
E800-0220T3	FN3258-55-34	
E800-0300T3	FN3258-75-34	
E800-0370T3	FN3258-100-35	
E800-0450T3	FN3258-100-35	
E800-0550T3	FN3359-180-28	=
E800-0750T3	FN3359-180-28	相
E800-0900T3	FN3359-250-28	三相 380V 金属壳壁挂
E800-1100T3	FN3359-250-28	金
E800-1320T3	FN3359-320-28	 属
E800-1600T3	FN3359-400-99	壁
E800-1800T3	FN3359-400-99	迁

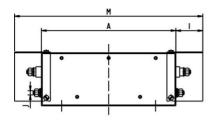

二、滤波器外形尺寸

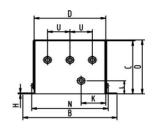

1、FN2060 外形尺寸及安装尺寸

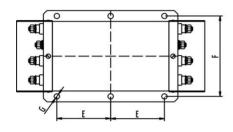


型号	FN2060-6-06	FN2060-10-06	FN2060-20-06		
A	71	85	113.5±1		
В	46. 6	54	57.5±1		
С	29. 3	30. 3	45. 4±1		
D	50. 5	64. 8	94±1		
E	44. 5	49. 8	56		
F	61	75	103		
G	21	27	25		
Н	10.8	12. 3	12. 4		
I	19. 3	20. 8	32. 4		
J	20. 1	19. 9	15. 5		
K	5. 3	5. 3	4. 4		
L	6. 3	6. 3	6		
M	0. 7	0. 7	0. 9		
N	6. 3×0. 8				

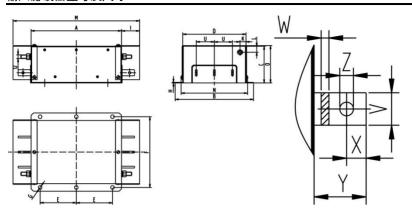
2、FN3258 外形尺寸及安装尺寸







型 号	FN3258-7	FN3258-16	FN3258-42	FN3258-55	FN3258-75	FN3258-100
型 空 写	-44	-44	-33	-34	-34	-35
Α	190	250	310	250	270	270
В	40	45	50	85	80	90
C	70	70	85	90	135	150
D	160	220	280	220	240	240
E	180	235	295	235	255	255
F	20	25	30	60	60	65
G	4. 5	5. 4	5. 4	5. 4	6. 5	6. 5
Н	1	1	1	1	1.5	1. 5
11	22	22	25	39	39	45
J	M5	M5	M6	M6	M6	M10
K	20	22. 5	25	42. 5	40	45
L1	29. 5	29. 5	37. 5	26. 5	70. 5	64


3、FN3359 外形尺寸及安装尺寸

型 号	FN3359-180-28	FN3359-250-28
A	300	300
В	210	230
С	120	125
D	160	180
E	120	120
F	185	205
G	ф12	ф 12
Н	2	2
1	33	33
J	M 10	M 10
К	55	62. 5
L	30	35
M	420	420
N	171	191
0	127	132
U	50	55

型号	FN3359-320-28	FN3359-400-99
A	300	300
В	260	260
С	115	115
D	210	210
E	120	120
F	235	235
G	ф 12	ф 12
Н	2	2
I	43	43
J	M12	M12
K	20	20
L	20	20
M	440	440
N	221	221
0	122	122
U	60	60
V	25	25
W	6	6
X	15	15
Y	40	40
Z	ф 10. 5	ф 10. 5

- 注: 1、产品提供整套的 EMC 解决方案,满足 CE 认证。在要求满足 CE 认证机型,不带内置滤波器时,必须按照本说明书中输入滤波器选型匹配滤波器,否则不满足 CE 要求。
- 2、订货型号中无 R3,则需要匹配上表中的输入滤波器,外置滤波器方案只是针对 180kW 及以下机型,200kW 及以上无需匹配输入滤波器即可满足要求。

升级记录:

说明书版本号	更改内容	
2013120503A	增加看门狗、转速追踪、S 曲线功能	
2014010704A	软件升级增加一系列功能	
2014080504A	增加 3.0kW 机型	
2014121005A	更改结构	
2015012806A	30kW 及以上提升至通用额定电流	
2015043007A	增加矢量控制相关功能码	
2015091008A	增加输入滤波器的配置及修正上一版本的图 片等	
2016063009A	结构与功率对应调整等	
2017010511A	更改个别机型重量和结构	
2017020612A	增加 DI 端子延时功能及说明书 BUG	
2017072113A	增加选配制动电阻及增加数字电位器控制盒介绍;	
2017092514A	1、5.5KW、55KW、315KW 及 355KW 缩壳。 2、增加 CA1 结构。	
2018080315A	1、更改 F210 的出厂设定范围; 2、将 T3 3. Okw 额定功率改为 7. 6A;	
2019060416A	1、模拟量调试输入电阻改为 50 欧 2、增加功能码 F438/F439(模拟量输入类型)	
2019112117A	增加 GP 接地保护	
2020081318A	扩展频率源选择, 扩展欠载功能	
2022010719A	升级 Modbus 通讯,增加休眠表征等功能	
2022051620A	增加 PID 反馈源选择	
2022081521A	扩展 FA02 等功能	
2023011522A	增加 F776 功能	
2024061723A	更改冷却方式	
2024091124A	增加 VF 分离	
2024404/254	增加 FIF0 和 H 区等, 软件 3.90 及以后版本	
2024101625A	支持高速脉冲输入、输出和 H 区。	
2025041726A	18. 5KW 更改为 E5 结构	
2025061327A	11KW 更改为 E4 结构	
2025072328A	增加 F359, F360;增加通讯地址 0x102B	
2025102029A	增加双继电器相关介绍。	

敬告用户:

感谢您选用我公司产品,为保证您得到我公司最佳售后服务,请认真阅读下述条款,并做好相 关事官。

1、产品保修范围

按使用要求正常使用情况下, 所产生的故障。

2、产品保修期限

本公司产品的保修期为自出厂之日起,十二个月以内。保修期后实行长期技术服务。

3、非保修范围

任何违反使用要求的人为意外、自然灾害等原因导致的损坏,以及未经许可而擅自对变频器拆卸、 改装及修理的行为,视为自动放弃保修服务。

4、从中间商处购入产品

凡从经销代理商处购买产品的用户, 在产品发生故障时, 请与经销商、代理商联系。

- 5、免责条款 : 因下列原因造成的产品故障不在厂家 12 个月免费保修服务范围之内:
 - (1) 、厂家不依照《产品说明书》中所列程序进行正确的操作;
 - (2) 、用户未经与厂家沟通自行修理产品或擅自改造产品;
 - (3)、因用户环境不良导致产品器件异常老化或引发故障:
 - (4) 、因用户超过产品的标准范围使用产品:
- (5)、由于地震、火灾、风水灾害、雷击、异常电压或其他自然灾害等不可抗力的原因造成的产品 损坏:
- (6)、因购买后由于人为摔落及运输导致硬件损坏。
- 6、责任:无论从合同、保修期、疏忽、民事侵权行为、严格的责任、或其他任何角度讲, EURA 和他的供货商及分销商都不承担以下由于使用设备所造成的特殊的、间接的、继发的损失责任。其中包括但不仅仅局限于利润和收入的损失,使用供货设备和相关设备的损失,资金的花费,代用设备的花费,工具费和服务费,停机时间的花费,延误,及购买者的客户或任何第三方的损失。另外,除非用户能够提供有力的证据,否则公司及它的供货商将不对某些指控如:因使用不合格原材料、错误设计、或不规范生产所引发的问题负责。

解释权归欧瑞传动电气股份有限公司

如果您对 EURA 的变频器还有疑问,请与 EURA 公司或其办事处联系。技术数据、信息、规范 均为出版时的最新资料,EURA 公司保留不事先通知而更改的权利,并对由此造成的损失不承 担任何责任。解释权归 EURA 公司。

2025102029A